Constraint Satisfaction Problems

AIMA: Chapter 6
Big idea

- Represent the *constraints* that solutions must satisfy in a uniform *declarative* language
- Find solutions by *GENERAL PURPOSE* search algorithms with no changes from problem to problem
 - No hand built transition functions
 - No hand built heuristics
- Just specify the problem in a formal declarative language, and a general purpose algorithm does everything else!
Constraint Satisfaction Problems

A CSP consists of:

- **Finite set of variables** $X_1, X_2, ..., X_n$

- **Nonempty domain of possible values** for each variable $D_1, D_2, ... D_n$ where $D_i = \{v_1, ..., v_k\}$

- **Finite set of constraints** $C_1, C_2, ..., C_m$

 — Each **constraint** C_i limits the values that variables can take, e.g., $X_1 \neq X_2$. A **state** is defined as an **assignment** of values to some or all variables.

- A **consistent** assignment does not violate the constraints.

- Example problem: Sudoku
Constraint satisfaction problems

• An assignment is *complete* when every variable is assigned a value.

• A *solution* to a CSP is a *complete, consistent* assignment.

• Solutions to CSPs can be found by a completely *general purpose* algorithm, given only the formal specification of the CSP.

• Beyond our scope: CSPs that require a solution that maximizes an *objective function*.
Applications

- Map coloring
- Scheduling problems
 - Job shop scheduling
 - Scheduling the Hubble Space Telescope
- Floor planning for VLSI
- Sudoku
- ...
Example: Map-coloring

- **Variables:** \(WA, NT, Q, NSW, V, SA, T \)
- **Domains:** \(D_i = \{ \text{red, green, blue} \} \)
- **Constraints:** adjacent regions must have different colors
 - e.g., \(WA \neq NT \)
 - So \((WA, NT)\) must be in \{(red, green), (red, blue), (green, red), ...\}
Example: Map-coloring

Solutions: complete and consistent assignments

- e.g., WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green
Benefits of CSP

- Clean specification of many problems, generic goal, successor function & heuristics
 - Just represent problem as a CSP & solve with general package
- CSP “knows” which variables violate a constraint
 - And hence where to focus the search
- **CSPs:** Automatically prune off all branches that violate constraints
 - (State space search could do this only by hand-building constraints into the successor function)
CSP Representations

- **Constraint graph:**
 - *nodes* are variables
 - *arcs* are (binary) constraints

- **Standard representation pattern:**
 - variables with values

- **Constraint graph** simplifies search.
 - e.g. Tasmania is an independent subproblem.

- **This problem: A binary CSP:**
 - each constraint relates two variables
Varieties of CSPs

- **Discrete variables**
 - finite domains:
 - n variables, domain size $d \rightarrow O(d^n)$ complete assignments
 - e.g., Boolean CSPs, includes Boolean satisfiability (NP-complete)
 - infinite domains:
 - integers, strings, etc.
 - e.g., job scheduling, variables are start/end days for each job
 - need a constraint language, e.g., $\text{StartJob}_1 + 5 \leq \text{StartJob}_3$

- **Continuous variables**
 - e.g., start/end times for Hubble Space Telescope observations
 - linear constraints solvable in polynomial time by linear programming
Varieties of constraints

- **Unary** constraints involve a single variable,
 - e.g., SA ≠ green

- **Binary** constraints involve pairs of variables,
 - e.g., SA ≠ WA

- **Higher-order** constraints involve 3 or more variables
 - e.g., crypt-arithmetic column constraints

- **Preference** (soft constraints) e.g. red is better than green can be represented by a cost for each variable assignment
 - Constrained optimization problems.
Idea 1: CSP as a search problem

- A CSP can easily be expressed as a search problem
 - Initial State: the empty assignment \{\}.
 - Successor function: Assign value to any unassigned variable provided that there is not a constraint conflict.
 - Goal test: the current assignment is complete.
 - Path cost: a constant cost for every step.

- Solution is always found at depth \(n \), for \(n \) variables
 - Hence Depth First Search can be used
Backtracking search

- Note that variable assignments are *commutative*
 - Eg [step 1: $WA = \text{red}$; step 2: $NT = \text{green}$] equivalent to [step 1: $NT = \text{green}$; step 2: $WA = \text{red}$]
 - Therefore, a *tree search*, not a *graph search*

- Only need to consider assignments to a single variable at each node
 - $b = d$ and there are d^n leaves (n variables, domain size d)

- Depth-first search for CSPs with single-variable assignments is called *backtracking* search

- Backtracking search is the basic *uninformed* algorithm for CSPs

- Can solve n-queens for $n \approx 25$
Backtracking example
Backtracking example

And so on....
Idea 2: Improving backtracking efficiency

- **General-purpose** methods & **general-purpose** heuristics can give huge gains in speed, *on average*
- **Heuristics:**
 - Q: Which variable should be assigned next?
 1. Most constrained variable
 2. (if ties:) Most constraining variable
 - Q: In what order should that variable’s values be tried?
 3. Least constraining *value*
 - Q: Can we detect inevitable failure early?
 4. Forward checking
Heuristic 1: Most constrained variable

- Choose a variable with the fewest legal values

- a.k.a. minimum remaining values (MRV) heuristic
Heuristic 2: Most constraining variable

- Tie-breaker among most constrained variables
- Choose the variable with the most constraints on remaining variables

These two heuristics together lead to immediate solution of our example problem.
Heuristic 3: Least constraining value

- Given a variable, choose the least constraining value:
 - the one that rules out the fewest values in the remaining variables

Note: demonstrated here independent of the other heuristics
Heuristic 4: Forward checking

Idea:

- Keep track of *remaining* legal values for *unassigned* variables
- Terminate search when any unassigned variable has no remaining legal values

(A first step towards Arc Consistency & AC-3)
Forward checking

• **Idea:**
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any unassigned variable has no remaining legal values

![Map showing forward checking process](image-url)
Forward checking

Idea:
- Keep track of remaining legal values for unassigned variables
- Terminate search when any unassigned variable has no remaining legal values
Forward checking

- **Idea:**
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any unassigned variable has no remaining legal values

Terminate! No possible value for SA
Example: 4-Queens Problem

Assign value to unassigned variable
Example: 4-Queens Problem

Forward check!
Example: 4-Queens Problem

Assign value to unassigned variable
Example: 4-Queens Problem

CIS 421/521 - Intro to AI
Example: 4-Queens Problem

Picking up a little later after two steps of backtracking....

Assign value to unassigned variable
Example: 4-Queens Problem

Forward check!
Example: 4-Queens Problem

Assign value to unassigned variable
Example: 4-Queens Problem

Forward check!
Example: 4-Queens Problem

Assign value to unassigned variable
Example: 4-Queens Problem

Forward check!
Example: 4-Queens Problem

Assign value to unassigned variable
Towards Constraint propagation

- Forward checking propagates information from *assigned* to *unassigned* variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!

- **Constraint propagation** goes beyond forward checking & repeatedly enforces constraints locally
Arc Consistency, Constraint Propagation & AC-3
Idea 3 (big idea): **Inference** in CSPs

- CSP solvers combine search and inference
 - Search
 - assigning a value to a variable
 - **Constraint propagation (inference)**
 - Eliminates possible values for a variable if the value would violate local consistency
 - **Can do inference first, or intertwine it with search**
 - You’ll investigate this in the Sudoku homework

- Local consistency
 - **Node consistency**: satisfies unary constraints
 - This is trivial!
 - **Arc consistency**: satisfies binary constraints
 - \((X_i\text{ is arc-consistent w.r.t. } X_j\text{ if for every value } v \text{ in } D_i, \text{ there is some value } w \text{ in } D_j \text{ that satisfies the binary constraint on the arc between } X_i\text{ and } X_j)\)
Review: CSP Representations

- **Constraint graph:**
 - *nodes* are variables
 - *edges are constraints*
Edges to Arcs: From Constraint Graph to DAG

- Given a pair of nodes X_i and X_j connected by a constraint **edge**, we represent this not by a single undirected edge, but a *pair of directed arcs*.
 - For a connected pair of nodes X_i and X_j, there are two arcs that connect them: (i,j) and (j,i).
Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y
Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y
Arc consistency

- Simplest form of propagation makes each arc consistent
- \(X \rightarrow Y \) is consistent iff for every value \(x \) of \(X \) there is some allowed \(y \)
- If \(X \) loses a value, recheck neighbors of \(X \)
Arc consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent iff for every value x of X there is some allowed y

- If X loses a value, we need to recheck neighbors of X
- Detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
Arc Consistency

An arc \((i,j)\) is arc consistent if and only if every value \(v\) on \(X_i\) is consistent with some label on \(X_j\).

To make an arc \((i,j)\) arc consistent,
- for each value \(v\) on \(X_i\),
 - if there is no label on \(X_j\) consistent with \(v\)
 - then remove \(v\) from \(X_i\)

- Given \(d\) values, checking arc \((i,j)\) takes \(O(d^2)\) time worst case
Replacing Search: Constraint Propagation Invented…

Dave Waltz’s insight:

- **By iterating** over the graph, the arc-consistency constraints can be propagated along arcs of the graph.

- **Search**: Use constraints to *add* labels to find *one solution*

- **Constraint Propagation**: Use constraints to *eliminate* labels to simultaneously find *all solutions*
The Waltz/Mackworth Constraint Propagation Algorithm

1. Assign every node in the constraint graph a set of all possible values

2. Repeat until there is no change in the set of values associated with any node:

 3. For each node i:

 4. For each neighboring node j in the picture:

 5. Remove any value from i which is not arc consistent with j.

Inefficiencies: Towards AC-3

1. At each iteration, we only need to examine those \(X_i \) where at least one neighbor of \(X_i \) has lost a value in the previous iteration.

2. If \(X_i \) loses a value only because of arc inconsistencies with \(X_j \), we don’t need to check \(X_j \) on the next iteration.

3. Removing a value on \(X_i \) can only make \(X_j \) arc-inconsistent with respect to \(X_i \) itself. Thus, we only need to check that \((j,i)\) is still arc-consistent.

These insights lead a much better algorithm...
AC-3

function **AC-3(csp)** return the CSP, possibly with reduced domains
inputs: **csp**, a binary csp with variables \{X_1, X_2, ..., X_n\}
local variables: **queue**, a queue of arcs initially the arcs in **csp**
while **queue is not empty** do
 \((X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)\)
 if **REMOVE-INCONSISTENT-VALUES(X_i, X_j)** then
 for each \(X_k\) in \(\text{NEIGHBORS}[X_i] - \{X_j\}\) do
 add \((X_k, X_i)\) to queue

function **REMOVE-INCONSISTENT-VALUES(X_i, X_j)** return **true iff we remove a value**

removed \leftarrow false
for each \(x\) in \(\text{DOMAIN}[X_i]\) do
 if no value \(y\) in \(\text{DOMAIN}[X_j]\) allows \((x,y)\) to satisfy the constraints between \(X_i\) and \(X_j\) then delete \(x\) from \(\text{DOMAIN}[X_i]\); **removed \leftarrow true**
return **removed**
AC-3: Worst Case Complexity Analysis

- All nodes can be connected to every other node,
 - so each of \(n \) nodes must be compared against \(n-1 \) other nodes,
 - so total # of arcs is \(2*n*(n-1) \), i.e. \(O(n^2) \)
- If there are \(d \) values, checking arc \((i,j)\) takes \(O(d^2) \) time
- Each arc \((i,j)\) can only be inserted into the queue \(d \) times
- Worst case complexity: \(O(n^2d^3) \)

(For planar constraint graphs, the number of arcs can only be linear in \(N \) and the time complexity is only \(O(nd^3) \))
Local search for CSPs

- Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned

- To apply to CSPs:
 - allow states with unsatisfied constraints
 - operators reassign variable values

- Variable selection: randomly select any conflicted variable

- Value selection by **min-conflicts** heuristic:
 - choose value that violates the fewest constraints
 - i.e., hill-climb with $h(n) = \text{total number of violated constraints}$
Example: n-queens

- **States**: 4 queens in 4 columns \((4^4 = 256 \text{ states})\)
- **Actions**: move queen in column
- **Goal test**: no attacks
- **Evaluation**: \(h(n) = \text{number of attacks}\)

Given random initial state, local min-conflicts can solve \(n\)-queens in almost constant time for arbitrary \(n\) with high probability (e.g., \(n = 10,000,000\))
Beyond binary constraints: Path consistency

• Generalizes arc-consistency from individual binary constraints to multiple constraints

• A pair of variables X_i, X_j is path-consistent w.r.t. X_m if for every assignment $X_i=a, X_j=b$ consistent with the constraints on X_i, X_j there is an assignment to X_m that satisfied the constraints on X_i, X_m and X_j, X_m

• Global constraints
 • Can apply to any number of variables
 • E.g., in Sudoku, all numbers in a row must be different
 • E.g., in cryptarithmetic, each letter must be a different digit
 • Example algorithm:
 — If any variable has a single possible value, delete that variable from the domains of all other constrained variables
 — If no values are left for any variable, you found a contradiction
Simple CSPs can be solved quickly

1. Completely independent subproblems
 - e.g. Australia & Tasmania
 - Easiest

2. Constraint graph is a tree
 - Any two variables are connected by only a single path
 - Permits solution in time linear in number of variables
 - Do a topological sort and just march down the list

A E
 / /
 B – D
 / \
C F

A => B => C => D => E => F
Simplifying hard CSPs: Cycle Cutsets

- **Constraint graph can be decomposed into a tree**
 - Collapse or remove nodes
 - *Cycle cutset* S of a graph G: any subset of vertices of G that, if removed, leaves G a tree

- **Cycle cutset algorithm**
 - Choose some cutset S
 - For each possible assignment to the variables in S that satisfies all constraints on S
 - Remove any values for the domains of the remaining variables that are not consistent with S
 - If the remaining CSP has a solution, then you have are done
 - For graph size n, domain size d
 - Time complexity for cycle cutset of size c:
 $O(d^c \cdot d^2(n-c)) = O(d^{c+2}(n-c))$