Reinforcement Learning Wrap-up

Slides courtesy of Dan Klein and Pieter Abbeel – University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu]
Approximate Q-Learning
Generalizing Across States

- Basic Q-Learning keeps a table of all q-values

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory

- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we’ll see it over and over again
Example: Pacman

Let’s say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Or even this one!

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)]
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]
Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - $1 / (\text{dist to dot})^2$
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
- Can also describe a q-state (s, a) with features (e.g. action moves closer to food)
Using a feature representation, we can write a q function (or value function) for any state using a few weights:

\[V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Advantage: our experience is summed up in a few powerful numbers

- Disadvantage: states may share features but actually be very different in value!
Approximate Q-Learning

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Q-learning with linear Q-functions:

 transition = \((s, a, r, s') \)

 difference = \(r + \gamma \max_{a'} Q(s', a') \) - \(Q(s, a) \)

 \[Q(s, a) \leftarrow Q(s, a) + \alpha \text{[difference]} \]

 \[w_i \leftarrow w_i + \alpha \text{[difference]} f_i(s, a) \]

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state’s features

- Formal justification: online least squares
Example: Q-Pacman

\[Q(s, a) = 4.0f_{\text{DOT}}(s, a) - 1.0f_{\text{GST}}(s, a) \]

\[f_{\text{DOT}}(s, \text{NORTH}) = 0.5 \]

\[f_{\text{GST}}(s, \text{NORTH}) = 1.0 \]

\[a = \text{NORTH} \]

\[r = -500 \]

\[Q(s', \cdot) = 0 \]

\[Q(s, \text{NORTH}) = +1 \]

\[r + \gamma \max_{a'} Q(s', a') = -500 + 0 \]

\[\text{difference} = -501 \]

\[w_{\text{DOT}} \leftarrow 4.0 + \alpha [-501] 0.5 \]

\[w_{\text{GST}} \leftarrow -1.0 + \alpha [-501] 1.0 \]

\[Q(s, a) = 3.0f_{\text{DOT}}(s, a) - 3.0f_{\text{GST}}(s, a) \]

[Demo: approximate Q-learning pacman (L11D10)]
Video of Demo Approximate Q-Learning -- Pacman
Q-Learning and Least Squares
Linear Approximation: Regression*

Prediction:
\[
\hat{y} = w_0 + w_1 f_1(x)
\]

Prediction:
\[
\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)
\]
Optimization: Least Squares*

\[
\text{total error} = \sum_i (y_i - \hat{y}_i)^2 = \sum_i \left(y_i - \sum_k w_k f_k(x_i) \right)^2
\]
Minimizing Error*

Imagine we had only one point x, with features $f(x)$, target value y, and weights w:

$$\text{error}(w) = \frac{1}{2} \left(y - \sum_k w_k f_k(x) \right)^2$$

$$\frac{\partial \text{error}(w)}{\partial w_m} = - \left(y - \sum_k w_k f_k(x) \right) f_m(x)$$

$$w_m \leftarrow w_m + \alpha \left(y - \sum_k w_k f_k(x) \right) f_m(x)$$

Approximate q update explained:

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$

“target” “prediction”
Overfitting: Why Limiting Capacity Can Help*
Policy Search
Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren’t the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - Q-learning’s priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
 - We’ll see this distinction between modeling and prediction again later in the course

- Solution: learn policies that maximize rewards, not the values that predict them

- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights
Policy Search

- **Simplest policy search:**
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before

- **Problems:**
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical

- Better methods exploit look ahead structure, sample wisely, change multiple parameters...
Policy Search

[Video: HELICOPTER]
Probability

Slides courtesy of Dan Klein and Pieter Abbeel – University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Today

- Probability
 - Random Variables
 - Joint and Marginal Distributions
 - Conditional Distribution
 - Product Rule, Chain Rule, Bayes’ Rule
 - Inference
 - Independence

- You’ll need all this stuff A LOT for the next few weeks, so make sure you go over it now! Read AIMA 13.1-13.5.
Uncertainty

- **General situation:**
 - **Observed variables (evidence):** Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
 - **Unobserved variables:** Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
 - **Model:** Agent knows something about how the known variables relate to the unknown variables

- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge
Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - \(R = \) Is it raining?
 - \(T = \) Is it hot or cold?
 - \(D = \) How long will it take to drive to work?
 - \(L = \) Where is the ghost?

- We denote random variables with capital letters

- Like variables in a CSP, random variables have domains
 - \(R \) in \{true, false\} (often write as \{+r, -r\})
 - \(T \) in \{hot, cold\}
 - \(D \) in \([0, \infty)\)
 - \(L \) in possible locations, maybe \{\((0,0), (0,1), \ldots \)\}
Probability Distributions

- Associate a probability with each value

 - Temperature:

 \[P(T) \]

T	P
hot	0.5
cold	0.5

 - Weather:

 \[P(W) \]

W	P
sun	0.6
rain	0.1
fog	0.3
meteor	0.0
Probability Distributions

- Unobserved random variables have distributions

\[
\begin{array}{|c|c|}
\hline
T & P \\
\hline
\text{hot} & 0.5 \\
\text{cold} & 0.5 \\
\hline
\end{array}
\quad
\begin{array}{|c|c|}
\hline
W & P \\
\hline
\text{sun} & 0.6 \\
\text{rain} & 0.1 \\
\text{fog} & 0.3 \\
\text{meteor} & 0.0 \\
\hline
\end{array}
\]

- A distribution is a TABLE of probabilities of values

- A probability (lower case value) is a single number

\[P(W = \text{rain}) = 0.1\]

- Must have: \(\forall x \ P(X = x) \geq 0\) and \(\sum_x P(X = x) = 1\)

Shorthand notation:

\[P(\text{hot}) = P(T = \text{hot}),\]
\[P(\text{cold}) = P(T = \text{cold}),\]
\[P(\text{rain}) = P(W = \text{rain}),\]
\[\ldots\]

OK if all domain entries are unique
A joint distribution over a set of random variables: \(X_1, X_2, \ldots X_n \) specifies a real number for each assignment (or outcome):

\[
P(X_1 = x_1, X_2 = x_2, \ldots X_n = x_n) \\
P(x_1, x_2, \ldots, x_n)
\]

- Must obey: \(P(x_1, x_2, \ldots, x_n) \geq 0 \)

\[
\sum_{(x_1, x_2, \ldots, x_n)} P(x_1, x_2, \ldots, x_n) = 1
\]

Size of distribution if \(n \) variables with domain sizes \(d \):

- For all but the smallest distributions, impractical to write out!

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>
A probabilistic model is a joint distribution over a set of random variables.

Probabilistic models:
- (Random) variables with domains
- Assignments are called outcomes
- Joint distributions: say whether assignments (outcomes) are likely
- *Normalized:* sum to 1.0
- Ideally: only certain variables directly interact

Constraint satisfaction problems:
- Variables with domains
- Constraints: state whether assignments are possible
- Ideally: only certain variables directly interact

Distribution over T,W

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Constraint over T,W

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>T</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>F</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>F</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>T</td>
</tr>
</tbody>
</table>
Events

- **An event** is a set E of outcomes

$$P(E) = \sum_{(x_1 \ldots x_n) \in E} P(x_1 \ldots x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it’s hot AND sunny?
 - Probability that it’s hot?
 - Probability that it’s hot OR sunny?

- Typically, the events we care about are partial assignments, like $P(T=\text{hot})$

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Quiz: Events

- $P(+x, +y)$?
- $P(+x)$?
- $P(-y \text{ OR } +x)$?

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+x$</td>
<td>$+y$</td>
<td>0.2</td>
</tr>
<tr>
<td>$+x$</td>
<td>$-y$</td>
<td>0.3</td>
</tr>
<tr>
<td>$-x$</td>
<td>$+y$</td>
<td>0.4</td>
</tr>
<tr>
<td>$-x$</td>
<td>$-y$</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

\[
P(T, W)
\]

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

\[
P(T) = \sum_s P(t, s)
\]

\[
P(T)
\]

<table>
<thead>
<tr>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>0.5</td>
</tr>
<tr>
<td>cold</td>
<td>0.5</td>
</tr>
</tbody>
</table>

\[
P(W)
\]

<table>
<thead>
<tr>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.6</td>
</tr>
<tr>
<td>rain</td>
<td>0.4</td>
</tr>
</tbody>
</table>

\[
P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)
\]
Quiz: Marginal Distributions

$P(X,Y)$

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>+x</td>
<td>+y</td>
<td>0.2</td>
</tr>
<tr>
<td>+x</td>
<td>-y</td>
<td>0.3</td>
</tr>
<tr>
<td>-x</td>
<td>+y</td>
<td>0.4</td>
</tr>
<tr>
<td>-x</td>
<td>-y</td>
<td>0.1</td>
</tr>
</tbody>
</table>

$P(x) = \sum_y P(x,y)$

$P(y) = \sum_x P(x,y)$

$P(X)$

<table>
<thead>
<tr>
<th>X</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>+x</td>
<td></td>
</tr>
<tr>
<td>-x</td>
<td></td>
</tr>
</tbody>
</table>

$P(Y)$

<table>
<thead>
<tr>
<th>Y</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>+y</td>
<td></td>
</tr>
<tr>
<td>-y</td>
<td></td>
</tr>
</tbody>
</table>
A simple relation between joint and conditional probabilities

In fact, this is taken as the definition of a conditional probability

\[P(a|b) = \frac{P(a, b)}{P(b)} \]

\[P(T, W) \]

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

\[P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4 \]

\[= P(W = s, T = c) + P(W = r, T = c) = 0.2 + 0.3 = 0.5 \]
Quiz: Conditional Probabilities

\[P(X, Y) \]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>+x</td>
<td>+y</td>
<td>0.2</td>
</tr>
<tr>
<td>+x</td>
<td>-y</td>
<td>0.3</td>
</tr>
<tr>
<td>-x</td>
<td>+y</td>
<td>0.4</td>
</tr>
<tr>
<td>-x</td>
<td>-y</td>
<td>0.1</td>
</tr>
</tbody>
</table>

- \(P(+x \mid +y) \)?
- \(P(-x \mid +y) \)?
- \(P(-y \mid +x) \)?
Conditional Distributions

- Conditional distributions are probability distributions over some variables given fixed values of others.

Conditional Distributions

$P(W|T = hot)$

<table>
<thead>
<tr>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.8</td>
</tr>
<tr>
<td>rain</td>
<td>0.2</td>
</tr>
</tbody>
</table>

$P(W|T = cold)$

<table>
<thead>
<tr>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>rain</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Joint Distribution

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Normalization Trick

\[
\begin{align*}
P(W = s | T = c) &= \frac{P(W = s, T = c)}{P(T = c)} \\
&= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)} \\
&= \frac{0.2}{0.2 + 0.3} = 0.4
\end{align*}
\]

\[
\begin{align*}
P(W = r | T = c) &= \frac{P(W = r, T = c)}{P(T = c)} \\
&= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)} \\
&= \frac{0.3}{0.2 + 0.3} = 0.6
\end{align*}
\]
Normalization Trick

\[P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)} = \frac{0.2}{0.2 + 0.3} = 0.4 \]

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

SELECT the joint probabilities matching the evidence

NORMALIZE the selection (make it sum to one)

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>rain</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>
Normalization Trick

\[
P(T, W)
\]

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

SELECT the joint probabilities matching the evidence

\[
P(c, W)
\]

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

NORMALIZE the selection (make it sum to one)

\[
P(W | T = c)
\]

<table>
<thead>
<tr>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>rain</td>
<td>0.6</td>
</tr>
</tbody>
</table>

- Why does this work? Sum of selection is \(P(\text{evidence})!\) (\(P(T=c),\) here)

\[
P(x_1 | x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}
\]
Quiz: Normalization Trick

- $P(X \mid Y=-y)$?

<table>
<thead>
<tr>
<th>$P(X, Y)$</th>
<th>X</th>
<th>Y</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$+x$</td>
<td>$+y$</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>$+x$</td>
<td>$-y$</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>$-x$</td>
<td>$+y$</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>$-x$</td>
<td>$-y$</td>
<td>0.1</td>
</tr>
</tbody>
</table>

SELECT the joint probabilities matching the evidence

NORMALIZE the selection (make it sum to one)
To Normalize

- (Dictionary) To bring or restore to a normal condition

- Procedure:
 - Step 1: Compute $Z = \sum\text{over all entries}$
 - Step 2: Divide every entry by Z

- Example 1

<table>
<thead>
<tr>
<th>W</th>
<th>P</th>
<th>Normalize</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>sun</td>
<td>0.2</td>
<td></td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>rain</td>
<td>0.3</td>
<td>Z = 0.5</td>
<td>rain</td>
<td>0.6</td>
</tr>
</tbody>
</table>

- Example 2

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
<th>Normalize</th>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>20</td>
<td></td>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>5</td>
<td></td>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>10</td>
<td></td>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>15</td>
<td></td>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

All entries sum to ONE.
Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)

- We generally compute conditional probabilities
 - $P(\text{on time} | \text{no reported accidents}) = 0.90$
 - These represent the agent’s beliefs given the evidence

- Probabilities change with new evidence:
 - $P(\text{on time} | \text{no accidents, 5 a.m.}) = 0.95$
 - $P(\text{on time} | \text{no accidents, 5 a.m., raining}) = 0.80$
 - Observing new evidence causes beliefs to be updated
Inference by Enumeration

General case:
- Evidence variables: $E_1 \ldots E_k = e_1 \ldots e_k$
- Query* variable: Q
- Hidden variables: $H_1 \ldots H_r$

$X_1, X_2, \ldots X_n$

All variables

We want:

$P(Q|e_1 \ldots e_k)$

* Works fine with multiple query variables, too

Step 1: Select the entries consistent with the evidence

<table>
<thead>
<tr>
<th>x</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>0.05</td>
</tr>
<tr>
<td>-1</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Step 2: Sum out H to get joint of Query and evidence

$P(Q, e_1 \ldots e_k) = \sum_{h_1 \ldots h_r} P(Q, h_1 \ldots h_r, e_1 \ldots e_k)$

$X_1, X_2, \ldots X_n$

Step 3: Normalize

$Z = \sum_q P(Q, e_1 \ldots e_k)$

$P(Q|e_1 \ldots e_k) = \frac{1}{Z} P(Q, e_1 \ldots e_k)$
Inference by Enumeration

- $P(W)$?
- $P(W | \text{winter})$?
- $P(W | \text{winter, hot})$?

<table>
<thead>
<tr>
<th>S</th>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>summer</td>
<td>hot</td>
<td>sun</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>cold</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>cold</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td>winter</td>
<td>hot</td>
<td>sun</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>hot</td>
<td>rain</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>cold</td>
<td>sun</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>cold</td>
<td>rain</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Inference by Enumeration

- Obvious problems:
 - Worst-case time complexity $O(d^n)$
 - Space complexity $O(d^n)$ to store the joint distribution
The Product Rule

- Sometimes have conditional distributions but want the joint

\[P(y)P(x|y) = P(x, y) \quad \text{↔} \quad P(x|y) = \frac{P(x, y)}{P(y)} \]
The Product Rule

\[P(y)P(x|y) = P(x, y) \]

Example:

<table>
<thead>
<tr>
<th>(P(W))</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sun</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rain</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| \(P(D|W) \) | D | W | P |
|--------------|----|----|----|
| wet | sun| 0.1|
| dry | sun| 0.9|
| wet | rain| 0.7|
| dry | rain| 0.3|

<table>
<thead>
<tr>
<th>(P(D, W))</th>
<th>D</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>wet</td>
<td>sun</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dry</td>
<td>sun</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wet</td>
<td>rain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dry</td>
<td>rain</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
More generally, can always write any joint distribution as an incremental product of conditional distributions

\[P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2) \]

\[P(x_1, x_2, \ldots x_n) = \prod_i P(x_i|x_1 \ldots x_{i-1}) \]

Why is this always true?
Bayes Rule
Bayes’ Rule

- Two ways to factor a joint distribution over two variables:

\[P(x, y) = P(x|y)P(y) = P(y|x)P(x) \]

- Dividing, we get:

\[P(x|y) = \frac{P(y|x)}{P(y)}P(x) \]

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we’ll see later (e.g. ASR, MT)

- In the running for most important AI equation!
Inference with Bayes’ Rule

- **Example: Diagnostic probability from causal probability:**

\[
P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}
\]

- **Example:**
 - M: meningitis, S: stiff neck

\[
\begin{align*}
P(+m) &= 0.0001 \\
P(+s|+m) &= 0.8 \\
P(+s|-m) &= 0.01
\end{align*}
\]

\[
P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)}
\]

\[
= \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)}
\]

\[
= \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}
\]

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?
Quiz: Bayes’ Rule

- Given:

 \[P(W) \]

 \[
 \begin{array}{c|c}
 \text{R} & \text{P} \\
 \hline
 \text{sun} & 0.8 \\
 \text{rain} & 0.2 \\
 \end{array}
 \]

 \[P(D|W) \]

 \[
 \begin{array}{c|c|c}
 \text{D} & \text{W} & \text{P} \\
 \hline
 \text{wet} & \text{sun} & 0.1 \\
 \text{dry} & \text{sun} & 0.9 \\
 \text{wet} & \text{rain} & 0.7 \\
 \text{dry} & \text{rain} & 0.3 \\
 \end{array}
 \]

- What is \(P(W | \text{dry}) \)?
Next Time: Markov Models