HW5 – Perceptrons and Neural Nets has been released. When do you want it to be due?
- Tuesday August 6
- Tuesday August 13

The final project is due Wednesday August 7. If you’re doing the group R2D2 project, you should give a 5 minute presentation to describe what you did and show off your robots in action.

The final exam is in-class on Friday August 9. It will be mainly multiple choice questions similar to the quizzes, and it will cover all of the assigned readings.
Bayes’ Nets - Wrapup

Read AIMA
Chapter 14 "Probabilistic Reasoning"
(Sections 14.1, 14.2 and 14.4)
Conditional Independence

- X and Y are independent if
 \[\forall x, y \quad P(x, y) = P(x)P(y) \quad \rightarrow \quad X \perp Y \]

- X and Y are conditionally independent given Z
 \[\forall x, y, z \quad P(x, y|z) = P(x|z)P(y|z) \quad \rightarrow \quad X \perp Y|Z \]

- (Conditional) independence is a property of a distribution

- Example: \(Alarm \perp Fire|Smoke \)
Unconditional (absolute) independence very rare, and it doesn’t help us make inferences about other variables.

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

\(X \perp Y \mid Z \)

\[\forall x, y, z : P(x, y \mid z) = P(x \mid z)P(y \mid z) \]

or, equivalently, if and only if

\[\forall x, y, z : P(x \mid z, y) = P(x \mid z) \]
Bayes Nets: Assumptions

- Assumptions we are required to make to define the Bayes net when given the graph:
 \[P(x_i|x_1 \cdots x_{i-1}) = P(x_i|\text{parents}(X_i)) \]

- Beyond the “chain rule → Bayes net” conditional independence assumptions
 - There are often additional conditional independences
 - They can be read off the graph

- Important for modeling: understand assumptions made when choosing a Bayes net graph
D-separation: Outline
D-separation: Outline

- Study independence properties for triples
- Analyze complex cases in terms of member triples
- D-separation: a condition / algorithm for answering such queries
Recap: Causal Chains

- This configuration is a "causal chain"

- Guaranteed X independent of Z? **No!**
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic
 - In numbers:
 \[
 P(+y | +x) = 1, \quad P(-y | -x) = 1, \\
 P(+z | +y) = 1, \quad P(-z | -y) = 1
 \]
Recap: Causal Chains

- This configuration is a “causal chain”

- Guaranteed X independent of Z given Y?

\[
P(z|x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)} = P(z|y)
\]

Yes!

- Evidence along the chain “blocks” the influence

\[
P(x, y, z) = P(x)P(y|x)P(z|y)
\]
Recap: Common Cause

- This configuration is a “common cause”

\[P(x, y, z) = P(y)P(x|y)P(z|y) \]

- Guaranteed X independent of Z? No!

- One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.

- Example:
- Project due causes both forums busy and office hours to be full

- In numbers:

\[P(+x | +y) = 1, P(-x | -y) = 1, \]
\[P(+z | +y) = 1, P(-z | -y) = 1 \]
Recap: Common Cause

- This configuration is a “common cause”

\[P(x, y, z) = P(y)P(x|y)P(z|y) \]

- Guaranteed X and Z independent given Y?

\[
\begin{align*}
P(z|x, y) &= \frac{P(x, y, z)}{P(x, y)} \\
&= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)} \\
&= P(z|y)
\end{align*}
\]

Yes!

- Observing the cause blocks influence between effects.
Recap: Common Effect

- Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)

- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.

- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.
Are you variables in a BN independent?

- General question: in a given BN, are two variables independent (given some evidence)?

- Solution: analyze the graph

- Any complex example can be broken into repetitions of the three canonical cases
Recipe: shade evidence nodes, look for paths in the resulting graph

Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent

Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn’t count as a link in a path unless “active”
Question: Are X and Y conditionally independent given evidence variables \{Z\}?

- Yes, if X and Y “d-separated” by Z
- Consider all (undirected) paths from X to Y
- No active paths = independence!

A path is active if each triple is active:

- Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
- Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
- Common effect (aka v-structure)
 - $A \rightarrow B \leftarrow C$ where B or one of its descendants is observed

All it takes to block a path is a single inactive segment
D-Separation

- **Query:** \(X_i \perp \!\!\!\!\!\!\perp X_j | \{X_{k_1}, \ldots, X_{k_n}\} \) ?

- **Check all (undirected!) paths between** \(X_i \) **and** \(X_j \)
 - If one or more active, then independence not guaranteed
 \(X_i \perp \!\!\!\!\!\!\perp X_j | \{X_{k_1}, \ldots, X_{k_n}\} \)
 - Otherwise (i.e. if all paths are inactive), then independence is guaranteed
 \(X_i \perp \!\!\!\!\!\!\perp X_j | \{X_{k_1}, \ldots, X_{k_n}\} \)
Example

\[R \perp B \]
\[R \perp B | T \]
\[R \perp B | T' \]

Yes
Example

$L \perp T' | T$ Yes
$L \perp B$ Yes
$L \perp B | T$
$L \perp B | T'$
$L \perp B | T, R$ Yes
Structure Implications

- Given a Bayes net structure, can run d-separation algorithm to build a complete list of conditional independences that are necessarily true of the form

\[X_i \perp X_j \mid \{X_{k_1}, \ldots, X_{k_n}\} \]

- This list determines the set of probability distributions that can be represented
Computing All Independences

Compute **ALL THE INDEPENDENCES**!
Inference

- Inference: calculating some useful quantity from a joint probability distribution

- Examples:
 - Posterior probability

 $$P(Q|E_1 = e_1, \ldots E_k = e_k)$$
 - Most likely explanation:

 $$\arg\max_q P(Q = q|E_1 = e_1 \ldots)$$
Inference by Enumeration

- **General case:**
 - **Evidence variables:** \(E_1 \ldots E_k = e_1 \ldots e_k \)
 - **Query* variable:** \(Q \)
 - **Hidden variables:** \(H_1 \ldots H_r \)

\[\{ X_1, X_2, \ldots, X_n \} \quad \text{All variables} \]

- **We want:**
 \[P(Q | e_1 \ldots e_k) \]

- **Step 1:** Select the entries consistent with the evidence

- **Step 2:** Sum out \(H \) to get joint of Query and evidence

\[P(Q, e_1 \ldots e_k) = \sum_{h_1 \ldots h_r} P(Q, h_1 \ldots h_r, e_1 \ldots e_k) \]

\[\text{Z} = \sum_q P(Q, e_1 \ldots e_k) \]

\[P(Q | e_1 \ldots e_k) = \frac{1}{Z} P(Q, e_1 \ldots e_k) \]

- **Step 3:** Normalize

* Works fine with multiple query variables, too
Inference by Enumeration in Bayes’ Net

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

\[
P(B \mid +j, +m) \propto_B P(B, +j, +m) \\
= \sum_{e,a} P(B, e, a, +j, +m) \\
= \sum_{e,a} P(B)P(e)P(a \mid B, e)P(+j \mid a)P(+m \mid a)
\]

\[
= P(B)P(+e)P(+a \mid B, +e)P(+j \mid + a)P(+m \mid + a) + P(B)P(+e)P(-a \mid B, +e)P(+j \mid - a)P(+m \mid - a) \\
P(B)P(-e)P(+a \mid B, -e)P(+j \mid + a)P(+m \mid + a) + P(B)P(-e)P(-a \mid B, -e)P(+j \mid - a)P(+m \mid - a)
\]
Inference by Enumeration?

\[P(\text{Antilock} | \text{observed variables}) = ? \]
Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables

- Advanced technique: Variable Elimination
 - Interleave joining and marginalizing
 - Still NP-hard, but usually much faster than inference by enumeration
 - See the textbook for a description.
Naïve Bayes

Agent Testing Today!

Slides courtesy of Dan Klein and Pieter Abbeel --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Naïve Bayes

Read AIMA
Section 20.1
Machine Learning

- Up until now: how use a model to make optimal decisions

- Machine learning: how to acquire a model from data / experience
 - Learning parameters (e.g. probabilities)
 - Learning structure (e.g. BN graphs)
 - Learning hidden concepts (e.g. clustering)

- Today: model-based classification with Naive Bayes
Classification
Example: Spam Filter

- **Input:** an email
- **Output:** spam/ham

Setup:
- Get a large collection of example emails, each labeled "spam" or "ham"
- Note: someone has to hand label all this data!
- Want to learn to predict labels of new, future emails

Features: The attributes used to make the ham/spam decision
- Words: FREE!
- Text Patterns: $dd, CAPS
- Non-text: SenderInContacts
- ...
Example: Digit Recognition

- **Input:** images / pixel grids
- **Output:** a digit 0-9

Setup:
- Get a large collection of example images, each labeled with a digit
- Note: someone has to hand label all this data!
- Want to learn to predict labels of new, future digit images

Features: The attributes used to make the digit decision
- Pixels: (6,8)=ON
- Shape Patterns: NumComponents, AspectRatio, NumLoops
- …

0
1
2
??
Other Classification Tasks

- Classification: given inputs x, predict labels y

- Examples:
 - Spam detection (input: document, classes: spam / ham)
 - OCR (input: images, classes: characters)
 - Medical diagnosis (input: symptoms, classes: diseases)
 - Automatic essay grading (input: document, classes: grades)
 - Fraud detection (input: account activity, classes: fraud / no fraud)
 - Customer service email routing
 - ... many more

- Classification is an important commercial technology!
Model-Based Classification
Model-Based Classification

- Model-based approach
 - Build a model (e.g. Bayes’ net) where both the label and features are random variables
 - Instantiate any observed features
 - Query for the distribution of the label conditioned on the features

- Challenges
 - What structure should the BN have?
 - How should we learn its parameters?
Naïve Bayes for Digits

- Naïve Bayes: Assume all features are independent effects of the label

- Simple digit recognition version:
 - One feature (variable) F_{ij} for each grid position $<i,j>$
 - Feature values are on / off, based on whether intensity is more or less than 0.5 in underlying image
 - Each input maps to a feature vector, e.g.
 \[
 \begin{pmatrix} 1 \end{pmatrix} \rightarrow \langle F_{0,0} = 0, F_{0,1} = 0, F_{0,2} = 1, F_{0,3} = 1, F_{0,4} = 0, \ldots, F_{15,15} = 0 \rangle
 \]
 - Here: lots of features, each is binary valued

- Naïve Bayes model:
 \[
 P(Y|F_{0,0} \ldots F_{15,15}) \propto P(Y) \prod_{i,j} P(F_{i,j}|Y)
 \]

- What do we need to learn?
A general Naïve Bayes model:

\[P(Y, F_1 \ldots F_n) = P(Y) \prod_i P(F_i|Y) \]

- We only have to specify how each feature depends on the class
- Total number of parameters is \textit{linear} in number of features
- Model is very simplistic, but often works anyway
Inference for Naïve Bayes

- **Goal:** compute posterior distribution over label variable Y
 - **Step 1:** get joint probability of label and evidence for each label

$$P(Y, f_1 \ldots f_n) = \begin{bmatrix}
P(y_1, f_1 \ldots f_n) \\
P(y_2, f_1 \ldots f_n) \\
\vdots \\
P(y_k, f_1 \ldots f_n)
\end{bmatrix} + \begin{bmatrix}
P(y_1) \prod_i P(f_i|y_1) \\
P(y_2) \prod_i P(f_i|y_2) \\
\vdots \\
P(y_k) \prod_i P(f_i|y_k)
\end{bmatrix}
\frac{P(f_1 \ldots f_n)}{P(Y|f_1 \ldots f_n)}$$

- **Step 2:** sum to get probability of evidence
- **Step 3:** normalize by dividing Step 1 by Step 2
General Naïve Bayes

What do we need in order to use Naïve Bayes?

- Inference method (we just saw this part)
 - Start with a bunch of probabilities: $P(Y)$ and the $P(F_i|Y)$ tables
 - Use standard inference to compute $P(Y|F_1...F_n)$
 - Nothing new here

- Estimates of local conditional probability tables
 - $P(Y)$, the prior over labels
 - $P(F_i|Y)$ for each feature (evidence variable)
 - These probabilities are collectively called the parameters of the model and denoted by θ
 - Up until now, we assumed these appeared by magic, but...
 - ...they typically come from training data counts: we’ll look at this soon
Example: Conditional Probabilities

$P(Y)$

<table>
<thead>
<tr>
<th></th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>0.1</td>
</tr>
<tr>
<td>7</td>
<td>0.1</td>
</tr>
<tr>
<td>8</td>
<td>0.1</td>
</tr>
<tr>
<td>9</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

$P(F_{3,1} = on|Y)$

<table>
<thead>
<tr>
<th></th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>3</td>
<td>0.05</td>
</tr>
<tr>
<td>4</td>
<td>0.30</td>
</tr>
<tr>
<td>5</td>
<td>0.80</td>
</tr>
<tr>
<td>6</td>
<td>0.90</td>
</tr>
<tr>
<td>7</td>
<td>0.05</td>
</tr>
<tr>
<td>8</td>
<td>0.60</td>
</tr>
<tr>
<td>9</td>
<td>0.50</td>
</tr>
<tr>
<td>0</td>
<td>0.80</td>
</tr>
</tbody>
</table>

$P(F_{5,5} = on|Y)$

<table>
<thead>
<tr>
<th></th>
<th>0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td>2</td>
<td>0.01</td>
</tr>
<tr>
<td>3</td>
<td>0.90</td>
</tr>
<tr>
<td>4</td>
<td>0.80</td>
</tr>
<tr>
<td>5</td>
<td>0.90</td>
</tr>
<tr>
<td>6</td>
<td>0.90</td>
</tr>
<tr>
<td>7</td>
<td>0.25</td>
</tr>
<tr>
<td>8</td>
<td>0.85</td>
</tr>
<tr>
<td>9</td>
<td>0.60</td>
</tr>
<tr>
<td>0</td>
<td>0.80</td>
</tr>
</tbody>
</table>
A Spam Filter

- Naïve Bayes spam filter
 - Data:
 - Collection of emails, labeled spam or ham
 - Note: someone has to hand label all this data!
 - Split into training, held-out, test sets
 - Classifiers
 - Learn on the training set
 - (Tune it on a held-out set)
 - Test it on new emails

Dear Sir.

First, I must solicit your confidence in this transaction, this is by virtue of its nature as being utterly confidencial and top secret. …

TO BE REMOVED FROM FUTURE MAILINGS, SIMPLY REPLY TO THIS MESSAGE AND PUT "REMOVE" IN THE SUBJECT.

99 MILLION EMAIL ADDRESSES FOR ONLY $99

Ok, I know this is blatantly OT but I'm beginning to go insane. Had an old Dell Dimension XPS sitting in the corner and decided to put it to use, I know it was working pre being stuck in the corner, but when I plugged it in, hit the power nothing happened.
Naïve Bayes for Text

- **Bag-of-words Naïve Bayes:**
 - Features: \(W_i \) is the word at position \(i \)
 - As before: predict label conditioned on feature variables (spam vs. ham)
 - As before: assume features are conditionally independent given label
 - New: each \(W_i \) is identically distributed

- **Generative model:**
 \[
P(Y, W_1 \ldots W_n) = P(Y) \prod_i P(W_i|Y)
\]

- **“Tied” distributions and bag-of-words**
 - Usually, each variable gets its own conditional probability distribution \(P(F|Y) \)
 - In a bag-of-words model
 - Each position is identically distributed
 - All positions share the same conditional probs \(P(W|Y) \)
 - Why make this assumption?
 - Called “bag-of-words” because model is insensitive to word order or reordering
Example: Spam Filtering

- **Model:**
 \[P(Y, W_1 \ldots W_n) = P(Y) \prod_i P(W_i|Y) \]

- **What are the parameters?**

 \[
 \begin{array}{|c|c|}
 \hline
 P(Y) & P(W|\text{spam}) & P(W|\text{ham}) \\
 \hline
 \text{ham : 0.66} & \text{the : 0.0156} & \text{the : 0.0210} \\
 \text{spam : 0.33} & \text{to : 0.0153} & \text{to : 0.0133} \\
 & \text{and : 0.0115} & \text{of : 0.0119} \\
 & \text{of : 0.0095} & \text{2002: 0.0110} \\
 & \text{you : 0.0093} & \text{with: 0.0110} \\
 & \text{a : 0.0086} & \text{from: 0.0108} \\
 & \text{with: 0.0080} & \text{and : 0.0107} \\
 & \text{from: 0.0075} & \text{a : 0.0105} \\
 & \text{...} & \text{...} \\
 \hline
 \end{array}
 \]

- **Where do these tables come from?**
Spam Example

| Word | P(w|spam) | P(w|ham) | Tot Spam | Tot Ham |
|---------|-----------|---------|----------|---------|
| (prior) | 0.33333 | 0.66666 | -1.1 | -0.4 |

P(spam | w) = 98.9
Training and Testing

1.

2.
 Practice Exam

3.
 Final Exam!
Important Concepts

- **Data:** labeled instances, e.g., emails marked spam/ham
 - Training set
 - Held out set
 - Test set

- **Features:** attribute-value pairs which characterize each x

- **Experimentation cycle**
 - Learn parameters (e.g., model probabilities) on training set
 - (Tune hyperparameters on held-out set)
 - Compute accuracy of test set
 - Very important: never “peek” at the test set!

- **Evaluation**
 - Accuracy: fraction of instances predicted correctly

- **Overfitting and generalization**
 - Want a classifier which does well on test data
 - Overfitting: fitting the training data very closely, but not generalizing well
 - We’ll investigate overfitting and generalization formally in a few lectures
Generalization and Overfitting
Overfitting

Degree 15 polynomial
Example: Overfitting

\[P(\text{features}, C = 2) \]

\[P(C = 2) = 0.1 \]

\[P(\text{on}|C = 2) = 0.8 \]

\[P(\text{off}|C = 2) = 0.1 \]

\[P(\text{on}|C = 2) = 0.01 \]

\[P(\text{features}, C = 3) \]

\[P(C = 3) = 0.1 \]

\[P(\text{on}|C = 3) = 0.8 \]

\[P(\text{on}|C = 3) = 0.9 \]

\[P(\text{off}|C = 3) = 0.7 \]

\[P(\text{on}|C = 3) = 0.0 \]

2 wins!!
Example: Overfitting

- Postiors determined by *relative* probabilities (odds ratios):

\[
\frac{P(W|\text{ham})}{P(W|\text{spam})} \quad \frac{P(W|\text{spam})}{P(W|\text{ham})}
\]

- south-west : inf
- nation : inf
- morally : inf
- nicely : inf
- extent : inf
- seriously : inf

- screens : inf
- minute : inf
- guaranteed : inf
- $205.00 : inf
- delivery : inf
- signature : inf

What went wrong here?
Relative frequency parameters will **overfit** the training data!
- Just because we never saw a 3 with pixel (15,15) on during training doesn’t mean we won’t see it at test time
- Unlikely that every occurrence of “minute” is 100% spam
- Unlikely that every occurrence of “seriously” is 100% ham
- What about all the words that don’t occur in the training set at all?
- In general, we can’t go around giving unseen events zero probability

As an extreme case, imagine using the entire email as the only feature
- Would get the training data perfect (if deterministic labeling)
- Wouldn’t *generalize* at all
- Just making the bag-of-words assumption gives us some generalization, but isn’t enough

To generalize better: we need to smooth or *regularize* the estimates
Parameter Estimation
Parameter Estimation

- Estimating the distribution of a random variable
- *Elicitation*: ask a human (why is this hard?)
- *Empirically*: use training data (learning!)
 - E.g.: for each outcome x, look at the *empirical rate* of that value:
 \[P_{\text{ML}}(x) = \frac{\text{count}(x)}{\text{total samples}} \]
 \[P_{\text{ML}}(r) = \frac{2}{3} \]
 - This is the estimate that maximizes the *likelihood of the data*

\[L(x, \theta) = \prod_i P_{\theta}(x_i) \]
Relative frequencies are the maximum likelihood estimates

\[\theta_{ML} = \arg \max_{\theta} P(X|\theta) = \arg \max_{\theta} \prod_i P_\theta(X_i) \]

\[P_{ML}(x) = \frac{\text{count}(x)}{\text{total samples}} \]
Unseen Events
Laplace’s estimate:

- Pretend you saw every outcome once more than you actually did

\[
PLAP(x) = \frac{c(x) + 1}{\sum_x [c(x) + 1]}
\]

\[
= \frac{c(x) + 1}{N + |X|}
\]

- Can derive this estimate with Dirichlet priors
Laplace Smoothing

- **Laplace’s estimate (extended):**
 - Pretend you saw every outcome k extra times

 $$P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}$$

 - What’s Laplace with $k = 0$?
 - k is the strength of the prior

- **Laplace for conditionals:**
 - Smooth each condition independently:

 $$P_{LAP,k}(x|y) = \frac{c(x, y) + k}{c(y) + k|X|}$$

 - $P_{LAP,0}(X) =$
 - $P_{LAP,1}(X) =$
 - $P_{LAP,100}(X) =$
Estimation: Linear Interpolation*

- In practice, Laplace often performs poorly for $P(X|Y)$:
 - When $|X|$ is very large
 - When $|Y|$ is very large

- Another option: linear interpolation
 - Also get the empirical $P(X)$ from the data
 - Make sure the estimate of $P(X|Y)$ isn’t too different from the empirical $P(X)$

$$P_{LIN}(x|y) = \alpha \hat{P}(x|y) + (1.0 - \alpha) \hat{P}(x)$$

- What if α is 0? 1?

- For even better ways to estimate parameters, take CIS 530 next semester. 😊
Real NB: Smoothing

- For real classification problems, smoothing is critical
- New odds ratios:

\[
\frac{P(W|\text{ham})}{P(W|\text{spam})} \quad \frac{P(W|\text{spam})}{P(W|\text{ham})}
\]

<table>
<thead>
<tr>
<th>helvetica</th>
<th>11.4</th>
<th>verdana</th>
<th>28.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>seems</td>
<td>10.8</td>
<td>Credit</td>
<td>28.4</td>
</tr>
<tr>
<td>group</td>
<td>10.2</td>
<td>ORDER</td>
<td>27.2</td>
</tr>
<tr>
<td>ago</td>
<td>8.4</td>
<td></td>
<td>26.9</td>
</tr>
<tr>
<td>areas</td>
<td>8.3</td>
<td>money</td>
<td>26.5</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Do these make more sense?
Now we’ve got two kinds of unknowns
- Parameters: the probabilities $P(X|Y), P(Y)$
- Hyperparameters: e.g. the amount / type of smoothing to do, k, α

What should we learn where?
- Learn parameters from training data
- Tune hyperparameters on different data
 - Why?
- For each value of the hyperparameters, train and test on the held-out data
- Choose the best value and do a final test on the test data
Features:

- 4 Wheels!
- Larger than a Breadbox
- Made of Metal
- 100,000-mile drivetrain warranty

Batteries Not Included
Errors, and What to Do

Examples of errors

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the latest version of OmniPage Pro, for just $99.99* — the regular list price is $499! The most common question we've received about this offer is — Is this genuine? We would like to assure you that this offer is authorized by ScanSoft, is genuine and valid. You can get the . . .

. . . To receive your $30 Amazon.com promotional certificate, click through to
 http://www.amazon.com/apparel
and see the prominent link for the $30 offer. All details are there. We hope you enjoyed receiving this message. However, if you'd rather not receive future e-mails announcing new store launches, please click . . .
What to Do About Errors?

- Need more features—words aren’t enough!
 - Have you emailed the sender before?
 - Have 1K other people just gotten the same email?
 - Is the sending information consistent?
 - Is the email in ALL CAPS?
 - Do inline URLs point where they say they point?
 - Does the email address you by (your) name?

- Can add these information sources as new variables in the NB model

- Next class we’ll talk about classifiers which let you easily add arbitrary features more easily
Baselines

- **First step: get a baseline**
 - Baselines are very simple “straw man” procedures
 - Help determine how hard the task is
 - Help know what a “good” accuracy is

- **Weak baseline: most frequent label classifier**
 - Gives all test instances whatever label was most common in the training set
 - E.g. for spam filtering, might label everything as ham
 - Accuracy might be very high if the problem is skewed
 - E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good...

- For real research, usually use previous work as a (strong) baseline
Confidences from a Classifier

- **The confidence of a probabilistic classifier:**
 - Posterior over the top label

 $\text{confidence}(x) = \max_y P(y|x)$

 - Represents how sure the classifier is of the classification
 - Any probabilistic model will have confidences
 - No guarantee confidence is correct

- **Calibration**
 - Weak calibration: higher confidences mean higher accuracy
 - Strong calibration: confidence predicts accuracy rate
 - What’s the value of calibration?
Summary

- Bayes rule lets us do diagnostic queries with causal probabilities
- The naïve Bayes assumption takes all features to be independent given the class label
- We can build classifiers out of a naïve Bayes model using training data
- Smoothing estimates is important in real systems
- Classifier confidences are useful, when you can get them
Next Time: Perceptron!