Announcements

- Midterm Exam #2 will be on Tuesday Nov 6 (same day as the US Midterm Elections).
- Topics covered: **Expectimax and Utilities, MDPs, Reinforcement Learning, Probability, Markov Models and HMMs, Bayes’ Nets.**
- You should review: AIMA chapters 5 and 13-17, plus Sutton and Barto chapters 3 and 6
- I’ll try to release a practice exam by the weekend.
- Extra credit: vote before you come, and bring in an “I voted sticker” AND/OR take a friend to the polls and get their sticker. More EC for more GOTV. Polls open at 7AM.
Bayes’ Nets part 2
Probability Recap

- Conditional probability
 \[P(x|y) = \frac{P(x, y)}{P(y)} \]

- Product rule
 \[P(x, y) = P(x|y)P(y) \]

- Chain rule
 \[P(X_1, X_2, \ldots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\ldots \]
 \[= \prod_{i=1}^{n} P(X_i|X_1, \ldots, X_{i-1}) \]

- \(X, Y \) independent if and only if:
 \[\forall x, y : P(x, y) = P(x)P(y) \]

- \(X \) and \(Y \) are conditionally independent given \(Z \) if and only if:
 \[X \perp Y | Z \]
 \[\forall x, y, z : P(x, y|z) = P(x|z)P(y|z) \]
Bayes’ Nets

- A Bayes’ net is an efficient encoding of a probabilistic model of a domain

- Questions we can ask:
 - Inference: given a fixed BN, what is $P(X \mid e)$?
 - Representation: given a BN graph, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?
Bayes’ Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents’ values
 \[P(X|a_1 \ldots a_n) \]
- Bayes’ nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
 \[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]
Why are we guaranteed that setting

\[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i)) \]

results in a proper joint distribution?

Chain rule (valid for all distributions):

\[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i | x_1 \ldots x_{i-1}) \]

Assume conditional independences:

\[P(x_i | x_1, \ldots x_{i-1}) = P(x_i | \text{parents}(X_i)) \]

→ Consequence:

\[P(x_1, x_2, \ldots x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(X_i)) \]

Not every BN can represent every joint distribution

- The topology enforces certain conditional independencies
Example: Alarm Network

<table>
<thead>
<tr>
<th>B</th>
<th>P(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+b</td>
<td>0.001</td>
</tr>
<tr>
<td>-b</td>
<td>0.999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E</th>
<th>P(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+e</td>
<td>0.002</td>
</tr>
<tr>
<td>-e</td>
<td>0.998</td>
</tr>
</tbody>
</table>

| A | J | P(J|A) |
|----|-----|------|
| +a | +j | 0.9 |
| +a | -j | 0.1 |
| -a | +j | 0.05 |
| -a | -j | 0.95 |

| A | M | P(M|A) |
|----|-----|------|
| +a | +m | 0.7 |
| +a | -m | 0.3 |
| -a | +m | 0.01 |
| -a | -m | 0.99 |

| B | E | A | P(A|B,E) |
|----|-----|-----|---------|
| +b | +e | +a | 0.95 |
| +b | +e | -a | 0.05 |
| +b | -e | +a | 0.94 |
| +b | -e | -a | 0.06 |
| -b | +e | +a | 0.29 |
| -b | +e | -a | 0.71 |
| -b | -e | +a | 0.001 |
| -b | -e | -a | 0.999 |
Example: Alarm Network

\[P(+b, -e, +a, -j, +m) = \]

| A | J | P(J|A) |
|---|---|-------|
| +a | +j | 0.9 |
| +a | -j | 0.1 |
| -a | +j | 0.05 |
| -a | -j | 0.95 |

<table>
<thead>
<tr>
<th>E</th>
<th>P(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+e</td>
<td>0.002</td>
</tr>
<tr>
<td>-e</td>
<td>0.998</td>
</tr>
</tbody>
</table>

| B | E | A | P(A|B,E) |
|---|---|---|---------|
| +b | +e | +a | 0.95 |
| +b | +e | -a | 0.05 |
| +b | -e | +a | 0.94 |
| +b | -e | -a | 0.06 |
| -b | +e | +a | 0.29 |
| -b | +e | -a | 0.71 |
| -b | -e | +a | 0.001 |
| -b | -e | -a | 0.999 |
Example: Alarm Network

\[
P(+b, -e, +a, -j, +m) = P(+b)P(-e)P(+a|b, -e)P(-j|a)P(+m|a) = 0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7
\]
Example: Traffic

- Causal direction

\[
P(R)
\begin{array}{|c|c|}
\hline
+ r & 1/4 \\
- r & 3/4 \\
\hline
\end{array}
\]

\[
P(T \mid R)
\begin{array}{|c|c|c|}
\hline
+ r & + t & 3/4 \\
+ r & - t & 1/4 \\
- r & + t & 1/2 \\
- r & - t & 1/2 \\
\hline
\end{array}
\]

\[
P(T, R)
\begin{array}{|c|c|c|}
\hline
+ r & + t & 3/16 \\
+ r & - t & 1/16 \\
- r & + t & 6/16 \\
- r & - t & 6/16 \\
\hline
\end{array}
\]
Example: Reverse Traffic

- Reverse causality?

\[
P(T) = \begin{array}{c|c}
+\text{t} & 9/16 \\
-\text{t} & 7/16 \\
\end{array}
\]

\[
P(R|T) = \begin{array}{c|c|c}
+\text{t} & +\text{r} & 1/3 \\
-\text{r} & 2/3 \\
-\text{t} & +\text{r} & 1/7 \\
-\text{r} & 6/7 \\
\end{array}
\]

\[
P(T, R) = \begin{array}{c|c|c}
+\text{r} & +\text{t} & 3/16 \\
+\text{r} & -\text{t} & 1/16 \\
-\text{r} & +\text{t} & 6/16 \\
-\text{r} & -\text{t} & 6/16 \\
\end{array}
\]
Causality?

- When Bayes’ nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts

- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables Traffic and Drips
 - End up with arrows that reflect correlation, not causation

- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence
 \[P(x_i|x_1, \ldots x_{i-1}) = P(x_i|\text{parents}(X_i)) \]
Size of a Bayes’ Net

- How big is a joint distribution over N Boolean variables?

 2^N

- How big is an N-node net if nodes have up to k parents?

 $O(N \times 2^{k+1})$

- Both give you the power to calculate

 $$P(X_1, X_2, \ldots, X_n)$$

- BNs: Huge space savings!

- Also easier to elicit local CPTs

- Also faster to answer queries (coming)
Bayes’ Nets

☑ Representation

- Conditional Independences
- Probabilistic Inference
- Learning Bayes’ Nets from Data
Conditional Independence

- X and Y are independent if

\[\forall x, y \ P(x, y) = P(x)P(y) \quad \rightarrow \quad X \perp Y \]

- X and Y are conditionally independent given Z

\[\forall x, y, z \ P(x, y | z) = P(x | z)P(y | z) \quad \rightarrow \quad X \perp Y | Z \]

- (Conditional) independence is a property of a distribution

Example: \(Alarm \perp Fire | Smoke\)
Bayes Nets: Assumptions

- Assumptions we are required to make to define the Bayes net when given the graph:

 \[P(x_i|x_1 \cdots x_{i-1}) = P(x_i|\text{parents}(X_i)) \]

- Beyond above “chain rule \(\rightarrow\) Bayes net” conditional independence assumptions
 - Often additional conditional independences
 - They can be read off the graph

- Important for modeling: understand assumptions made when choosing a Bayes net graph
Conditional independence assumptions directly from simplifications in chain rule:

- Additional implied conditional independence assumptions?
Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (sometimes tedious)
 - If no, can prove with a counter example
 - Example:

```
X → Y → Z
```

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they could be independent: how?
D-separation: Outline
This configuration is a “causal chain”

Guaranteed X independent of Z? No!

One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.

Example:
- Low pressure causes rain causes traffic,
 high pressure causes no rain causes no traffic

In numbers:
- \(P(+y \mid +x) = 1, P(-y \mid -x) = 1, \)
- \(P(+z \mid +y) = 1, P(-z \mid -y) = 1 \)
Causal Chains

- This configuration is a “causal chain”

\[
P(x, y, z) = P(x)P(y|x)P(z|y)
\]

- Guaranteed X independent of Z given Y?

\[
P(z|x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)} = P(z|y)
\]

Yes!

- Evidence along the chain “blocks” the influence
Common Cause

- This configuration is a “common cause”

\[P(x, y, z) = P(y)P(x|y)P(z|y) \]

- Guaranteed X independent of Z? No!

 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.

 - Example:
 - Project due causes both forums busy and office hours to be full

 - In numbers:
 \[P(+x | +y) = 1, P(-x | -y) = 1, \]
 \[P(+z | +y) = 1, P(-z | -y) = 1 \]
This configuration is a “common cause”

Guaranteed X and Z independent given Y?

\[P(z|x, y) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)} = P(z|y) \]

Yes!

Observing the cause blocks influence between effects.

\[P(x, y, z) = P(y)P(x|y)P(z|y) \]
Common Effect

- Last configuration: two causes of one effect (v-structures)
- Are X and Y independent?

X: Raining

Y: Ballgame

Z: Traffic
Common Effect

- Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)

- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.

- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.
The General Case
The General Case

- General question: in a given BN, are two variables independent (given some evidence)?

- Solution: analyze the graph

- Any complex example can be broken into repetitions of the three canonical cases
Reachability

- Recipe: shade evidence nodes, look for paths in the resulting graph

- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent

- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn’t count as a link in a path unless “active”
Question: Are X and Y conditionally independent given evidence variables \{Z\}?
- Yes, if X and Y “d-separated” by Z
- Consider all (undirected) paths from X to Y
- No active paths = independence!

A path is active if each triple is active:
- Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
- Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
- Common effect (aka v-structure)
 $A \rightarrow B \leftarrow C$ where B or one of its descendants is observed

All it takes to block a path is a single inactive segment
D-Separation

- Query: \(X_i \perp\!
\parallel X_j \mid \{X_{k_1}, \ldots, X_{k_n}\} \) ?

- Check all (undirected!) paths between \(X_i \) and \(X_j \)
 - If one or more active, then independence not guaranteed
 \(X_i \not\perp\!
\parallel X_j \mid \{X_{k_1}, \ldots, X_{k_n}\} \)
 - Otherwise (i.e. if all paths are inactive), then independence is guaranteed
 \(X_i \perp\!
\parallel X_j \mid \{X_{k_1}, \ldots, X_{k_n}\} \)
Example

\[R \perp B \]
\[R \perp B \mid T \]
\[R \perp B \mid T' \]
Example

\[
L \perp T' | T \quad \text{Yes}
\]
\[
L \perp B \quad \text{Yes}
\]
\[
L \perp B | T
\]
\[
L \perp B | T'
\]
\[
L \perp B | T, R \quad \text{Yes}
\]
Example

- **Variables:**
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I’m sad

- **Questions:**

 \[
 T \perp D
 \]
 \[
 T \perp D|R
 \]
 \[
 T \perp D|R, S
 \]
 Yes
Structure Implications

- Given a Bayes net structure, can run d-separation algorithm to build a complete list of conditional independences that are necessarily true of the form

\[X_i \perp\!\!\!\!\!\!\!\!\!\!\perp X_j \mid \{X_{k_1}, \ldots, X_{k_n}\} \]

- This list determines the set of probability distributions that can be represented
Computing All Independences

Compute **ALL THE INDEPENDENCES**!
- Given some graph topology G, only certain joint distributions can be encoded.
- The graph structure guarantees certain (conditional) independences.
- (There might be more independence.)
- Adding arcs increases the set of distributions, but has several costs.
- Full conditioning can encode any distribution.

\[
\{X \perp Y, X \perp Z, Y \perp Z, \\
X \perp Z \mid Y, X \perp Y \mid Z, Y \perp Z \mid X\}
\]
Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes’ net’s joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution
Bayes’ Nets

- Representation
- Conditional Independences
 - Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Probabilistic inference is NP-complete
 - Sampling (approximate)
- Learning Bayes’ Nets from Data