Clustering

Slides Courtesy of Dan Klein and Pieter Abbeel --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Recap: similarity based classification

- **Classification from similarity**
 - Case-based reasoning
 - Predict an instance’s label using similar instances

- **Nearest-neighbor classification**
 - 1-NN: copy the label of the most similar data point
 - K-NN: vote the k nearest neighbors (need a weighting scheme)
 - Key issue: how to define similarity
 - Trade-offs: Small k gives relevant neighbors, Large k gives smoother functions

http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html
Recap: Parametric / Non-Parametric

- **Parametric models:**
 - Fixed set of parameters
 - More data means better settings

- **Non-parametric models:**
 - Complexity of the classifier increases with data
 - Better in the limit, often worse in the non-limit

- **(K)NN is non-parametric**
Recap: Nearest-Neighbor Classification

- Nearest neighbor for digits:
 - Take new image
 - Compare to all training images
 - Assign based on closest example

- Encoding: image is vector of intensities:
 \[1 = \langle 0.0, 0.0, 0.3, 0.8, 0.7, 0.1, \ldots, 0.0 \rangle \]

- What’s the similarity function?
 - Dot product of two images vectors?
 \[\text{sim}(x, x') = x \cdot x' = \sum_i x_i x'_i \]
 - Usually normalize vectors so \(||x|| = 1 \)
 - min = 0 (when?), max = 1 (when?)
Recap: Similarity Functions
What is the final value of a weight w_y of a perceptron?

- Can it be any real vector?
- No! It’s built by adding up inputs.

$$w_y = 0 + f(x_1) - f(x_5) + \ldots$$

$$w_y = \sum_i \alpha_{i,y} f(x_i)$$

Can reconstruct weight vectors (the primal representation) from update counts (the dual representation)

$$\alpha_y = \langle \alpha_{1,y}, \alpha_{2,y}, \ldots, \alpha_{n,y} \rangle$$
Recap: Dual Perceptron

- How to classify a new example x?

$$\text{score}(y, x) = w_y \cdot f(x)$$

$$= \left(\sum_i \alpha_{i,y} f(x_i) \right) \cdot f(x)$$

$$= \sum_i \alpha_{i,y} (f(x_i) \cdot f(x))$$

$$= \sum_i \alpha_{i,y} K(x_i, x)$$

- If someone tells us the value of K for each pair of examples, never need to build the weight vectors (or the feature vectors)!
Recap: Kernelized Perceptron

- If we had a black box (kernel) K that told us the dot product of two examples x and x':
 - Could work entirely with the dual representation
 - No need to ever take dot products ("kernel trick")

\[
\text{score}(y, x) = w_y \cdot f(x) = \sum_i \alpha_{i, y} K(x_i, x)
\]

- Like nearest neighbor – work with black-box similarities
Recap: Classification

- **Classification systems:**
 - Supervised learning
 - Make a *prediction* given evidence
 - We’ve seen several methods for this
 - Useful when you have *labeled data*
Clustering systems:
- Unsupervised learning
- Detect patterns in unlabeled data
 - E.g. group emails or search results
 - E.g. find categories of customers
 - E.g. detect anomalous program executions
- Useful when don’t know what you’re looking for
- Requires data, but no labels
- Often get gibberish
Clustering

- Basic idea: group together similar instances
- Example: 2D point patterns

What could “similar” mean?
- One option: small (squared) Euclidean distance

\[
\text{dist}(x, y) = (x - y)^T (x - y) = \sum_i (x_i - y_i)^2
\]
K-Means
K-Means

- An iterative clustering algorithm
 - Pick K random points as cluster centers (means)
 - Alternate:
 - Assign data instances to closest mean
 - Assign each mean to the average of its assigned points
 - Stop when no points’ assignments change
K-Means Example
K-Means as Optimization

- Consider the total distance to the means:

\[\phi(\{x_i\}, \{a_i\}, \{c_k\}) = \sum_i \text{dist}(x_i, c_{a_i}) \]

- Each iteration reduces \(\phi \)

- Two stages each iteration:
 - Update assignments: fix means \(c \), change assignments \(a \)
 - Update means: fix assignments \(a \), change means \(c \)
Phase I: Update Assignments

- For each point, re-assign to closest mean:

 $$a_i = \arg\min_k \text{dist}(x_i, c_k)$$

- Can only decrease total distance phi!

 $$\phi(\{x_i\}, \{a_i\}, \{c_k\}) = \sum_i \text{dist}(x_i, c_{a_i})$$
Phase II: Update Means

- Move each mean to the average of its assigned points:

\[c_k = \frac{1}{|\{i : a_i = k\}|} \sum_{i : a_i = k} x_i \]

- Also can only decrease total distance... (Why?)

- Fun fact: the point \(y \) with minimum squared Euclidean distance to a set of points \(\{x\} \) is their mean
Initialization

- **K-means is non-deterministic**
 - Requires initial means
 - It does matter what you pick!
 - What can go wrong?

- Various schemes for preventing this kind of thing: variance-based split / merge, initialization heuristics
A local optimum:

Why doesn’t this work out like the earlier example, with the purple taking over half the blue?
K-Means Questions

- Will K-means converge?
 - To a global optimum?

- Will it always find the true patterns in the data?
 - If the patterns are very very clear?

- Will it find something interesting?

- Do people ever use it?

- How many clusters to pick?
Agglomerative Clustering
Agglomerative clustering:
- First merge very similar instances
- Incrementally build larger clusters out of smaller clusters

Algorithm:
- Maintain a set of clusters
- Initially, each instance in its own cluster
- Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
 - Stop when there’s only one cluster left

Produces not one clustering, but a family of clusterings represented by a dendrogram
Agglomerative Clustering

- How should we define “closest” for clusters with multiple elements?

- Many options
 - Closest pair (single-link clustering)
 - Farthest pair (complete-link clustering)
 - Average of all pairs
 - Ward’s method (min variance, like k-means)

- Different choices create different clustering behaviors
Example: Document clustering

Top-level categories:
- supervised classification
- unsupervised clustering
This lecture is based on Michael Nielsen’s *Neural Networks and Deep Learning*, a free online book (with code!).
Please read chapters 1-3.
Review: Perceptron

- Perceptrons were developed in the 1950s and 1960s loosely inspired by the neuron.
Review: Perceptron

- Perceptron has inputs, x_1, x_2, \ldots, x_N, and weights w_1, w_2, \ldots, w_N.
- The perceptron outputs 0 or 1, based on the weighted sum is less than or greater than a threshold value.

\[
\text{output} = \begin{cases}
0 & \text{if } \sum_j w_j x_j \leq \text{threshold} \\
1 & \text{if } \sum_j w_j x_j > \text{threshold}
\end{cases}
\]
We can think about the perceptron as a device that makes decisions by weighing up evidence.

Example: Suppose there’s a cheese festival in your town. You like cheese.
Perceptrons for decision making

- You might use 3 factors to decide whether to go.
 1. Is the weather good?
 2. Can your loyal companion come with you?
 3. Is the festival near public transit?
- These can be the binary input values to a perceptron
Perceptrons for decision making

- By varying weights and the threshold we get different models of decision making
- Example 1: $w_1 = 6 \quad w_2 = 2 \quad w_3 = 2$, threshold = 5
- Example 2: $w_1 = 6 \quad w_2 = 2 \quad w_3 = 2$, threshold = 3
A complex network of perceptrons could make quite subtle decisions:

1st layer makes 3 simple decisions by weighing the input evidence

2nd layer makes a decision by weighing up the results from the 1st layer of decision-making

Complex decisions can be made by the perceptron in the third layer
Two notational changes simplify the way that perceptrons are described.

The first change is to replace the weighted sum as a dot product:

\[w \cdot x \equiv \sum_j w_j x_j. \]

The second change is to move the threshold to the other side of the inequality, and to replace it by a bias, \(b \equiv -\text{threshold} \).
Perceptrons can be used to compute logical functions like AND, OR and NAND.

Example:

<table>
<thead>
<tr>
<th>Input</th>
<th>Weighted sum</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>-20 + -20 +3 = 3</td>
<td>1</td>
</tr>
<tr>
<td>10 or 01</td>
<td>-21 + -20 +3 = 1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>-21 + -21 +3 = -1</td>
<td>0</td>
</tr>
</tbody>
</table>
Logical functions

- Networks of perceptrons to compute any logical function
- We can build any computation up out of NAND gates.
- For example, a circuit which adds two bits x_1 and x_2

\[
\begin{align*}
\text{sum: } & x_1 \oplus x_2 \\
\text{carry bit: } & x_1 x_2
\end{align*}
\]

All unlabeled weights are -2, all biases =3.
Power of Perceptrons

- Networks of Perceptrons are universal for computation, like NAND gates
- Perceptrons can be as powerful as any other computing device!

- We can devise learning algorithms to automatically tune the weights and biases of a network of artificial neurons
- Instead of laying out a circuit of NAND and other gates, neural networks can simply learn to solve problems
Learning to classify digits

- Input: image encoded input as a vector of intensities:
 \[\mathbf{1} = \langle 0.0, 0.0, 0.3, 0.8, 0.7, 0.1, \ldots, 0.0 \rangle \]

- Output: is this a one or not?

- Goal: set the parameters of the network to correctly classify the digits

- Learning = changing the weights and biases in the network.
Problem: a small change in the weights or bias of any single perceptron in the network can cause the output to completely flip from 0 to 1.

Solution: sigmoid neuron

Inputs: any real-valued number

Output is no longer just 1 or 0.

Perceptron output:
\[
\text{output} = \begin{cases}
0 & \text{if } w \cdot x + b \leq 0 \\
1 & \text{if } w \cdot x + b > 0
\end{cases}
\]

Sigmoid neuron output:
\[
\sigma(w \cdot x + b)
\]

Sigmoid function:
\[
\sigma(z) \equiv \frac{1}{1 + e^{-z}}
\]
$z \equiv w \cdot x + b$

Output:

$$\begin{cases}
0 & \text{if } w \cdot x + b \leq 0 \\
1 & \text{if } w \cdot x + b > 0
\end{cases}$$
$z \equiv w \cdot x + b$

Sigmoid neuron

$z = w \cdot x + b$ is very negative. Then $e^{-z} \to \infty$, and $\sigma(z) \approx 0$

$\sigma(z) \equiv \frac{1}{1 + e^{-z}}$
Smoothness is crucial

- Smoothness of σ means that small changes in the weights w_j and in the bias b will produce a small change the output from the neuron

$$\Delta\text{output} \approx \sum_j \frac{\partial \text{output}}{\partial w_j} \Delta w_j + \frac{\partial \text{output}}{\partial b} \Delta b$$

- Δoutput is a \textit{linear function} of the changes Δw_j and Δb
- This makes it easy to choose small changes in the weights and biases to achieve any desired small change in the output
Next time: Neural Nets and Gradient Descent