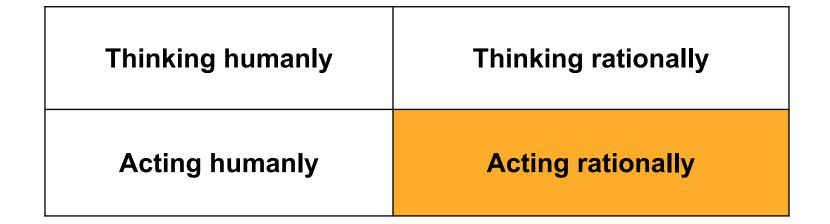
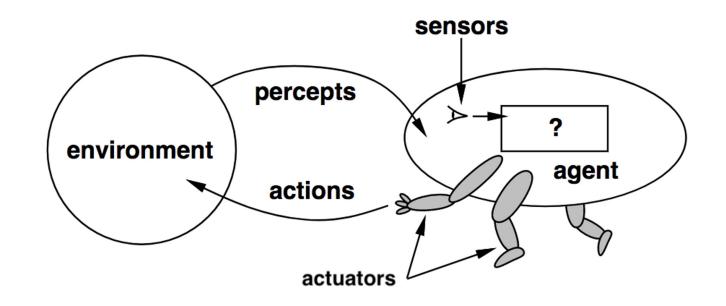

CIS 4210/5210: ARTIFICIAL INTELLIGENCE


Rational Agents

Read the AIMA textbook Chapter 2 "Intelligent Agents" (Sections 2.1-2.4). Complete the Quiz on Canvas.

Four views of Artificial Intelligence

This course is about effective programming techniques for designing rational agents


Agents

An **agent** is anything that **perceives** its environment through **sensors** and can **act** on its environment through **actuators**

A **percept** is the agent's perceptual inputs at any given instance.

Agents and environments

An agent is specified by an *agent function* $f:P \rightarrow a$ that maps a sequence of percept vectors P to an action a from a set A:

$$P = [p_0, p_1, ..., p_t]$$

$$A = \{a_0, a_1, ..., a_k\}$$

abstract mathematical description

Agent function & program

The *agent program* runs on the physical *architecture* to *produce f*

• agent = architecture + program

"Easy" solution: a giant table that maps every possible sequence P to an action a

• One problem: exponential in length of P

Agents

An *agent* is anything that can be viewed as

perceiving its environment through sensors and

acting upon that environment through actuators

Human agent:

- Sensors: eyes, ears, ...
- Actuators: hands, legs, mouth, ...

Robotic agent:

- Sensors: cameras and infrared range finders
- Actuators: various motors

The definition of agents is broad enough to include you and other humans, your pet hampster, robots, softbots, *thermostats*, ...

Rational Behavior

Rational Agent

Let's try to define "rational agent".

A rational agent is an agent that perceives its environment and and behaves rationally

Rational behavior: doing the right thing

Obviously doing the right thing is better than doing the wrong thing, but what does it mean to do the right thing?

In Philosophy

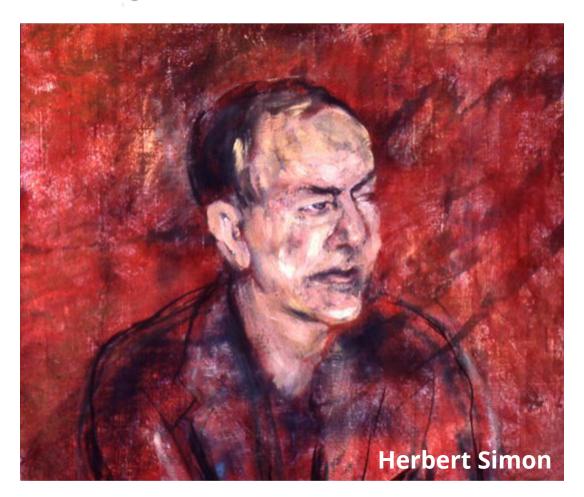
Moral philosophy has developed different notions of "the right thing".

Al is usually concerned with **Consequentialism.**

We evaluate an agent's behavior by its consequences.

A BEHAVIORAL MODEL OF RATIONAL CHOICE

In Economics


Herbert A. Simons

Summary: A model is proposed for the description of rational choice by organisms of limited computational ability.

Rational choice theory is a framework for understanding social and economic behavior.

The basic premise is that aggregate social behavior results from the behavior of individual actors, each of whom is making their individual decisions.

It assumes that individuals have preferences and choose the alternative that they prefer.

Performance measure

How do we know if an agent is acting rationally?

• Informally, we expect that it will do the right thing in all circumstances.

How do we know if it's doing the right thing?

We define a **performance measure:**

- An objective criterion for success of an agent's behavior
- given the evidence provided by the percept sequence.

Performance measure examples

Performance measures for a vacuum-cleaner agent might include things like:

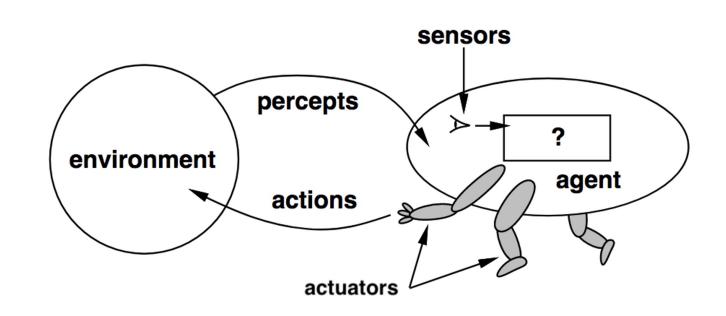
- +1 point for each clean square at time T
- +1 for cleaning a square, -1 for each move
- -1000 for more than *k* dirty squares

Rule of thumb for performance measures

It is better to design performance measures according to what you want to be achieved in the environment, rather than how you think the agent should behave.

For example, what might happen if we said

- +1 point for each time the robot cleans a square instead of
- +1 point for each clean square at time T



Rational agents

Rational Agent:

- For each possible percept sequence P
- a rational agent selects an action a
- to maximize its performance measure

Rationality is *not* omniscience

Ideal agent: maximizes *actual* performance, but needs to be *omniscient*.

- Usually impossible.....
 - But consider tic-tac-toe agent...
- Rationality ≠ Guaranteed Success

Caveat: computational limitations make complete rationality unachievable

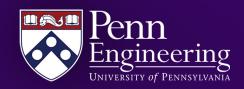
o design best *program* for given machine resources

Expected value

Rational Agent (initial definition):

- For each possible percept sequence P,
- a rational agent selects an action a
- to maximize its performance measure

Rational Agent (revised definition):


- For each possible percept sequence P,
- a rational agent selects an action a
- that maximizes the expected value of its performance measure

It doesn't have to know what the actual outcome will be.

CIS 4210/5210: ARTIFICIAL INTELLIGENCE

Task Environments

Task environments

To design a rational agent we need to specify a *task environment*

• a problem specification for which the agent is a solution

PEAS: to specify a task environment

- Performance measure
- *E*nvironment
- Actuators
- Sensors

PEAS: Specifying an automated taxi driver

Performance measure:

• 7

*E*nvironment:

• 7

Actuators:

• [

Sensors:

• 7

PEAS: Specifying an automated taxi driver

Performance measure:

• safe, fast, legal, comfortable, maximize profits

Environment:

• roads, other traffic, pedestrians, customers

Actuators:

• steering, accelerator, brake, signal, horn

Sensors:

• cameras, LiDAR, speedometer, GPS

https://www.today.com/video/amazon-adebuts-new-package-delivery-drone-61414981780

PEAS: Amazon Prime Air

Performance measure:

• 7

*E*nvironment:

• 7

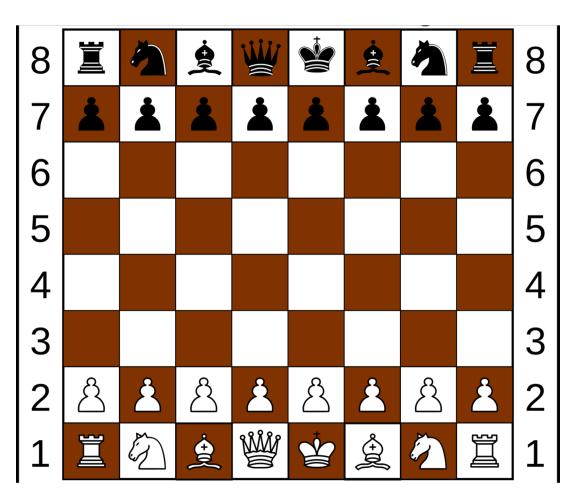
Actuators:

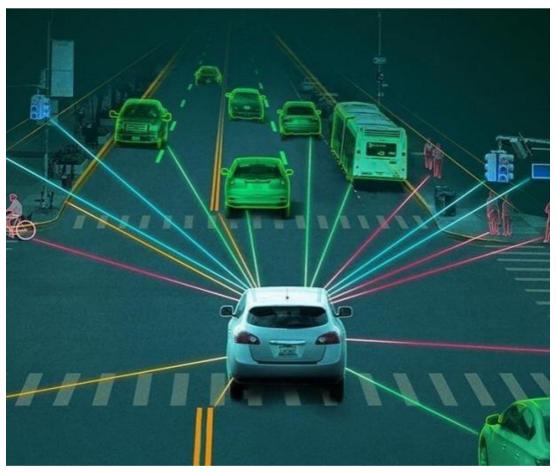
• 7

Sensors:

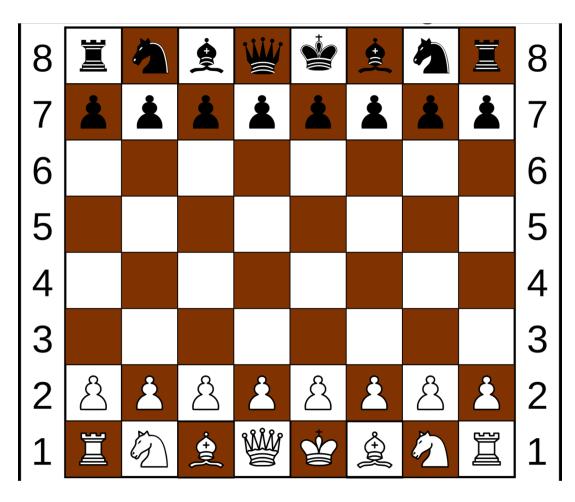
• ?

The rational agent designer's goal

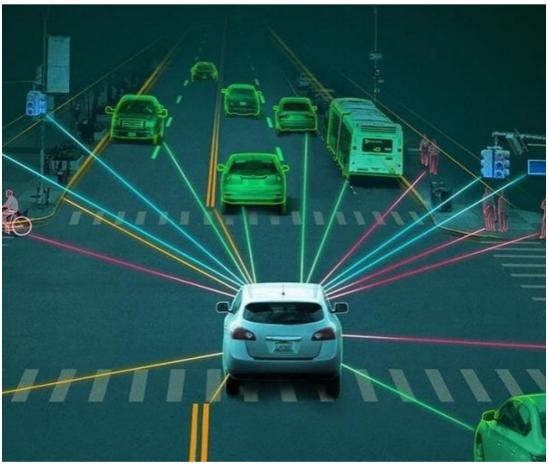

Goal of Al practitioner who designs rational agents: **given a** *PEAS* **task environment**,

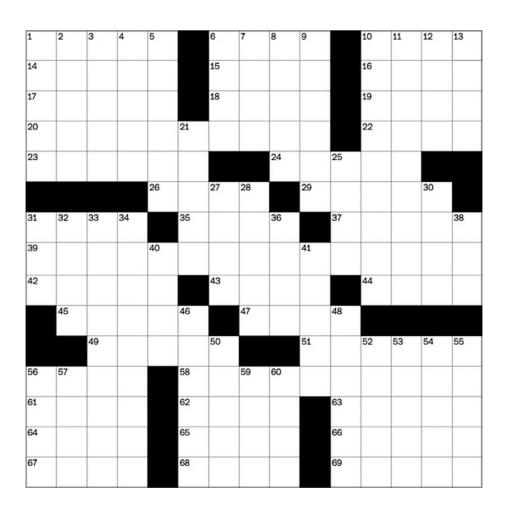

- 1. Construct agent function f that maximizes the expected value of the performance measure,
- 1. Design an *agent program* that implements f on a particular architecture

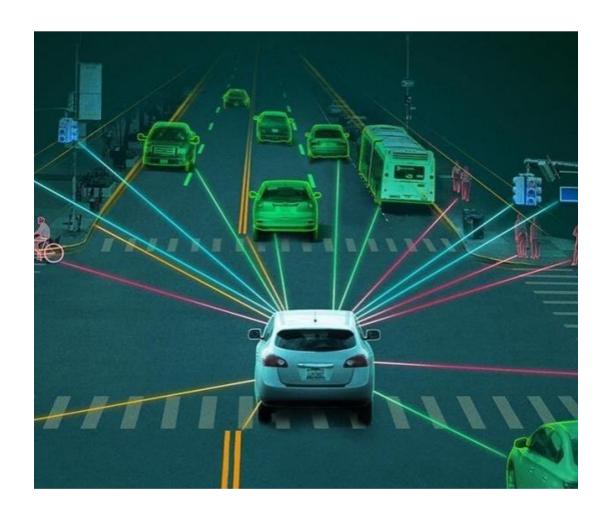
abstract mathematical description

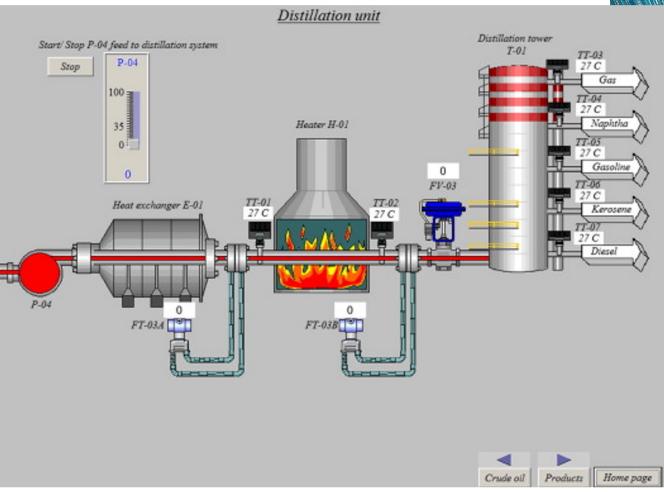

concrete implementation

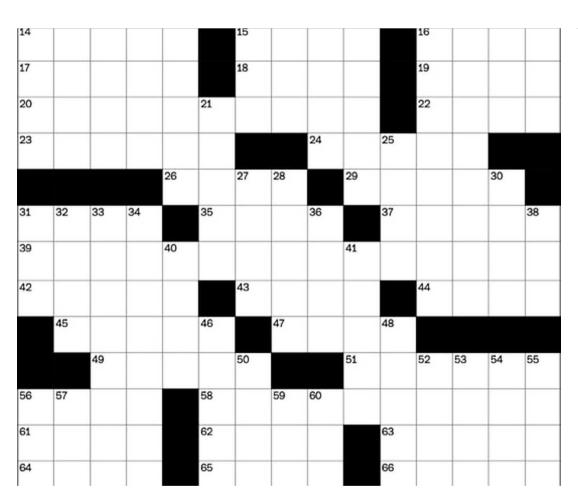
Fully Observable v. Partially Observable


Deterministic v. Nondeterministic v. Stochastic




Episodic v. Sequential


Static v. Dynamic



Discrete v. Continuous

Single Agent v. Multi Agent

When should something be considered an agent?

When should something be considered another agent?

If we're talking about a self driving taxi, when should we consider something part of the environment versus another agent?

For instance, a telephone pole is part of the environment, but a car might be another agent.

When something behavior can best be described as having its own performance measure, then we should consider it to be an agent.

Examples

TASK ENVIRONMENT	OBSERVABLE	AGENTS	DETERMINISTIC	EPISODIC	STATIC	DISCRETE
Crossword puzzle	Fully	Single	Deterministic	Sequential	Static	Discrete
Chess with a clock	Fully	Multi	Deterministic	Sequential	Semi	Discrete
Poker	Partially	Multi	Stochastic	Sequential	Static	Discrete
Backgammon	Fully	Multi	Stochastic	Sequential	Static	Discrete
Taxi driving	Partially	Multi	Stochastic	Sequential	Dynamic	Continuous
Medical diagnosis	Partially	Single	Stochastic	Sequential	Dynamic	Continuous
Image analysis	Fully	Single	Deterministic	Episodic	Semi	Continuous
Part-picking robot	Partially	Single	Stochastic	Episodic	Dynamic	Continuous
Refinery controller	Partially	Single	Stochastic	Sequential	Dynamic	Continuous
Interactive English tutor	Partially	Multi	Stochastic	Sequential	Dynamic	Discrete

The Hardest Environment

The hardest case is:

CONTINUOUS

PARTIALLY OBSERVABLE

STOCHASTIC

MULTIAGENT

UNKNOWN OUTCOMES

Environment Restrictions for Now

We will assume environment is:

STATIC

FULLY OBSERVABLE

DETERMINISTIC

DISCRETE

Reflex agents v. Problem solving agents

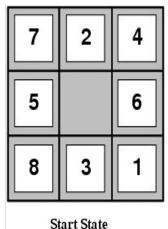
A simple reflex agent is one that selects an action based on the current percept, and

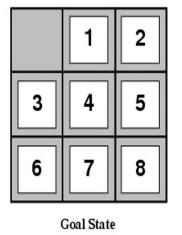
ignores the rest of the percept history.

A problem-solving agent must plan ahead. It will consider a sequence of actions that form a path to a goal state. The computational process that it undertakes is called search.

Koombana

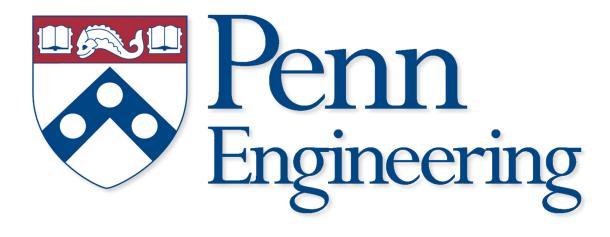
Problem Solving Agents & Problem Formulation


AIMA 3.1-3.2


Example search problem: 8-puzzle

Formulate **goal**

 Pieces to end up in order as shown...



Formulate *search problem*

- *States:* configurations of the puzzle (9! configurations)
- *Actions*: Move one of the movable pieces (≤4 possible)
- **Performance measure**: minimize total moves

Find *solution*

• Sequence of pieces moved: 3,1,6,3,1,...

Copyright 2022 University of Pennsylvania No reproduction or distribution without permission.