Machine Learning
Read AIMA Chapter 19.1-19.6
Machine Learning

Up until now: how use a model to make optimal decisions

Machine learning: how to acquire a model from data / experience
 • Learning parameters (e.g. probabilities)
 • Learning structure (e.g. BN graphs)
 • Learning hidden concepts (e.g. clustering)

Today: model-based classification with Naive Bayes and Perceptrons
Spam Classification

Input: an email
Output: spam/ham

Setup:
• Get a large collection of example emails, each labeled "spam" or "ham"
• Note: someone has to hand label all this data!
• Want to learn to predict labels of new, future emails

Features: The attributes used to make the ham / spam decision
• Words: FREE!
• Text Patterns: $dd, CAPS
• Non-text: SenderInContacts
• …
Digit Recognition

Input: images / pixel grids
Output: a digit 0-9

Setup:
• Get a large collection of example images, each labeled with a digit
• Note: someone has to hand label all this data!
• Want to learn to predict labels of new, future digit images

Features: The attributes used to make the digit decision
• Pixels: (6,8)=ON
• Shape Patterns: NumComponents, AspectRatio, NumLoops
• ...
Review Other Classification Tasks

Classification: given inputs x, predict labels y

Examples:
- Spam detection (input: document, classes: spam / ham)
- OCR (input: images, classes: characters)
- Medical diagnosis (input: symptoms, classes: diseases)
- Automatic essay grading (input: document, classes: grades)
- Fraud detection (input: account activity, classes: fraud / no fraud)
- Customer service email routing
- ... many more

Classification is an important commercial technology!
Model-Based Classification

Model-based approach
- Build a model (e.g. Bayes’ net) where both the label and features are random variables
- Instantiate any observed features
- Query for the distribution of the label conditioned on the features

Challenges
- What structure should the BN have?
- How should we learn its parameters?
Naïve Bayes for Digits

Naïve Bayes: Assume all features are independent effects of the label

Simple digit recognition version:
- One feature (variable) F_{ij} for each grid position $<i,j>$
- Feature values are on / off, based on whether intensity is more or less than 0.5 in underlying image
- Each input maps to a feature vector, e.g.

$$\begin{pmatrix} 1 \\ \end{pmatrix} \rightarrow (F_{0,0} = 0 \ F_{0,1} = 0 \ F_{0,2} = 1 \ F_{0,3} = 1 \ F_{0,4} = 0 \ \ldots F_{15,15} = 0)$$

- Here: lots of features, each is binary valued

Naïve Bayes model:

What do we need to learn?

$$P(Y|F_{0,0} \ldots F_{15,15}) \propto P(Y) \prod_{i,j} P(F_{i,j}|Y)$$
General Naïve Bayes

A general Naive Bayes model:

\[P(Y, F_1 \ldots F_n) = P(Y) \prod_{i} P(F_i|Y) \]

We only have to specify how each feature depends on the class.
Total number of parameters is \textit{linear} in number of features.
Model is very simplistic, but often works anyway.
Inference for Naïve Bayes

Goal: compute posterior distribution over label variable Y

- Step 1: get joint probability of label and evidence for each label

\[
P(Y, f_1 \ldots f_n) = \begin{bmatrix} P(y_1, f_1 \ldots f_n) \\ P(y_2, f_1 \ldots f_n) \\ \vdots \\ P(y_k, f_1 \ldots f_n) \end{bmatrix}
\]

- Step 2: sum to get probability of evidence

\[
P(f_1 \ldots f_n) = \sum_{y_1} P(y_1) \prod_{i} P(f_i | y_1) + \sum_{y_2} P(y_2) \prod_{i} P(f_i | y_2) + \cdots + \sum_{y_k} P(y_k) \prod_{i} P(f_i | y_k)
\]

- Step 3: normalize by dividing Step 1 by Step 2

\[
P(Y | f_1 \ldots f_n) = \frac{P(Y, f_1 \ldots f_n)}{P(f_1 \ldots f_n)}
\]
General Naïve Bayes

What do we need in order to use Naïve Bayes?

- Inference method (we just saw this part)
 - Start with a bunch of probabilities: \(P(Y) \) and the \(P(F_i|Y) \) tables
 - Use standard inference to compute \(P(Y|F_1...F_n) \)
 - Nothing new here

- Estimates of local conditional probability tables
 - \(P(Y) \), the prior over labels
 - \(P(F_i|Y) \) for each feature (evidence variable)
 - These probabilities are collectively called the parameters of the model and denoted by \(\theta \)
 - Up until now, we assumed these appeared by magic, but...
 - ...they typically come from training data counts: we’ll look at this soon
Example: Conditional Probabilities

| | \(P(Y) \) | \(P(F_{3,1} = \text{on}|Y) \) | \(P(F_{5,5} = \text{on}|Y) \) |
|---|------------|-------------------------------|-------------------------------|
| 0 | 0.1 | 1 | 1 |
| 1 | 0.1 | 0.01 | 0.05 |
| 2 | 0.1 | 0.05 | 0.01 |
| 3 | 0.1 | 0.05 | 0.90 |
| 4 | 0.1 | 0.30 | 0.80 |
| 5 | 0.1 | 0.80 | 0.90 |
| 6 | 0.1 | 0.90 | 0.90 |
| 7 | 0.1 | 0.05 | 0.25 |
| 8 | 0.1 | 0.60 | 0.85 |
| 9 | 0.1 | 0.50 | 0.60 |
| 0 | 0.1 | 0.80 | 0.80 |
Naïve Bayes for Text

Bag-of-words Naïve Bayes:
• Features: W_i is the word at position i
• As before: predict label conditioned on feature variables (spam vs. ham)
• As before: assume features are conditionally independent given label
• New: each W_i is identically distributed

Generative model:
$$P(Y, W_1 \ldots W_n) = P(Y) \prod_i P(W_i|Y)$$

“Tied” distributions and bag-of-words
• Usually, each variable gets its own conditional probability distribution $P(F|Y)$
• In a bag-of-words model
 • Each position is identically distributed
 • All positions share the same conditional probs $P(W|Y)$
 • Why make this assumption?
• Called “bag-of-words” because model is insensitive to word order or reordering
Example: Spam Filtering

Model: \(P(Y, W_1 \ldots W_n) = P(Y) \prod_i P(W_i|Y) \)

What are the parameters?

| \(P(Y) \) | \(P(W|\text{spam}) \) | \(P(W|\text{ham}) \) |
|-------------|-------------------|-------------------|
| **ham**: 0.66 | the: 0.0156 | the: 0.0210 |
| **spam**: 0.33 | to: 0.0153 | to: 0.0133 |
| | and: 0.0115 | of: 0.0119 |
| | of: 0.0095 | 2002: 0.0110 |
| | you: 0.0093 | with: 0.0110 |
| | a: 0.0086 | from: 0.0108 |
| | with: 0.0080 | and: 0.0105 |
| | from: 0.0075 | a: 0.0100 |
| | \ldots | \ldots |

Where do these tables come from?
Machine Learning

Read AIMA Chapter 19.1-19.6 and Jurafsky and Martin, Speech and Language Processing Chapter 4 “Naive Bayes and Sentiment Classification”
Naïve Bayes

A general Naïve Bayes model:

\[
P(Y, F_1 \ldots F_n) = P(Y) \prod_{i} P(F_i|Y)
\]

- \(|Y|\) labels
- \(|Y| \times |F|^n\) values
- \(n \times |F| \times |Y|\) parameters

We only have to specify how each feature depends on the class
Total number of parameters is \textit{linear} in number of features
Model is very simplistic, but often works anyway
Parameter Estimation
Parameter Estimation

Estimating the distribution of a random variable

Elicitation: ask a human (why is this hard?)

Empirically: use training data (learning!)
 - E.g.: for each outcome x, look at the *empirical rate* of that value
 \[
 P_{ML}(x) = \frac{\text{count}(x)}{\text{total samples}}
 \]
 \[
 P_{ML}(r) = \frac{2}{3}
 \]
 - This is the estimate that maximizes the *likelihood of the data*
 \[
 L(x, \theta) = \prod_{i} P_{\theta}(x_i)
 \]
Maximum Likelihood

Relative frequencies are the maximum likelihood estimates

$$\theta_{ML} = \arg \max_{\theta} P(X|\theta)$$
$$= \arg \max_{\theta} \prod_{i} P_{\theta}(X_i)$$

$$P_{ML}(x) = \frac{\text{count}(x)}{\text{total samples}}$$
Overfitting

\[P(\text{features}, C = 2) \]

\[P(C = 2) = 0.1 \]
\[P(\text{on}|C = 2) = 0.8 \]
\[P(\text{off}|C = 2) = 0.1 \]
\[P(\text{on}|C = 2) = 0.01 \]

\[P(Y, F_1 \ldots F_n) = P(Y) \prod_i P(F_i|Y) \]

2 wins!!
Overfitting

Postiors determined by *relative* probabilities (odds ratios):

$$\frac{P(W|\text{spam})}{P(W|\text{ham})}$$

screens	inf
minute	inf
guaranteed	inf
$205.00	inf
delivery	inf
signature	inf
...	

What went wrong here?
Generalization versus Overfitting

Relative frequency parameters will overfit the training data!

- Just because we never saw a 3 with pixel (15,15) on during training doesn’t mean we won’t see it at test time
- Unlikely that every occurrence of “minute” is 100% spam
- Unlikely that every occurrence of “seriously” is 100% ham
- What about all the words that don’t occur in the training set at all?
- In general, we can’t go around giving unseen events zero probability

As an extreme case, imagine using the entire email as the only feature

- Would get the training data perfect (if deterministic labeling)
- Wouldn’t generalize at all
- Just making the bag-of-words assumption gives us some generalization, but isn’t enough

To generalize better: we need to smooth or regularize the estimates
Laplace Smoothing

Laplace’s estimate:
- Pretend you saw every outcome once more than you actually did

\[P_{LAP}(x) = \frac{c(x) + 1}{\sum_x[c(x) + 1]} \]

\[= \frac{c(x) + 1}{N + |X|} \]

\[P_{ML}(X) = \]

\[P_{LAP}(X) = \]
Laplace Smoothing

Laplace’s estimate (extended):
• Pretend you saw every outcome k extra times

$$P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}$$

• What’s Laplace with $k = 0$?
• k is the strength of the prior

Laplace for conditionals:
• Smooth each condition independently:

$$P_{LAP,k}(x|y) = \frac{c(x, y) + k}{c(y) + k|X|}$$
Estimation: Linear Interpolation

Another option: linear interpolation
- Also get the empirical $P(X)$ from the data
- Make sure the estimate of $P(X|Y)$ isn’t too different from the empirical $P(X)$

$$P_{LIN}(x|y) = \alpha \hat{P}(x|y) + (1.0 - \alpha) \hat{P}(x)$$

- What if α is 0? 1?
Real NB: Smoothing

For real classification problems, smoothing is critical

New odds ratios:

\[
\frac{P(W|\text{spam})}{P(W|\text{ham})}
\]

<table>
<thead>
<tr>
<th>Word</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit</td>
<td>28.4</td>
</tr>
<tr>
<td>ORDER</td>
<td>27.2</td>
</tr>
<tr>
<td></td>
<td>26.9</td>
</tr>
<tr>
<td>money</td>
<td>26.5</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Do these make more sense?
Tuning on Held-Out Data

Now we’ve got two kinds of unknowns
- Parameters: the probabilities $P(X|Y)$, $P(Y)$
- Hyperparameters: e.g. the amount / type of smoothing to do, k, α

What should we learn where?
- Learn parameters from training data
- Tune hyperparameters on different data
 - Why?
 - For each value of the hyperparameters, train and test on the held-out data
- Choose the best value and do a final test on the test data
Important Concepts

Data: labeled instances, e.g. emails marked spam/ham
- Training set
- Held out set
- Test set

Features: attribute-value pairs which characterize each x

Experimentation cycle
- Learn parameters (e.g. model probabilities) on training set
- (Tune hyperparameters on held-out set)
- Compute accuracy of test set
- Very important: never “peek” at the test set!

Evaluation
- Accuracy: fraction of instances predicted correctly

Overfitting and generalization
- Want a classifier which does well on test data
- Overfitting: fitting the training data very closely, but not generalizing well
Baselines

First step: get a baseline
• Baselines are very simple “straw man” procedures
• Help determine how hard the task is
• Help know what a “good” accuracy is

Weak baseline: most frequent label classifier
• Gives all test instances whatever label was most common in the training set
• E.g. for spam filtering, might label everything as ham
• Accuracy might be very high if the problem is skewed
• E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good...

For real research, usually use previous work as a (strong) baseline
What to Do About Errors?

Problem: there’s still spam in your inbox

Need more **features** – words aren’t enough!

- Have you emailed the sender before?
- Have 1M other people just gotten the same email?
- Is the sending information consistent?
- Is the email in ALL CAPS?
- Do inline URLs point where they say they point?
- Does the email address you by (your) name?

Naïve Bayes models can incorporate a variety of features, but tend to do best in homogeneous cases (e.g. all features are word occurrences)
Summary

Bayes rule lets us do diagnostic queries with causal probabilities

The naïve Bayes assumption takes all features to be independent given the class label

We can build classifiers out of a naïve Bayes model using training data

Smoothing estimates is important in real systems
Perceptrons
Perceptrons were developed in the 1950s and 1960s loosely inspired by the neuron.

Perceptrons

Electronic ‘Brain’ Teaches Itself

The Navy last week demonstrated the embryo of an electronic computer named the Perceptron which, when completed in about a year, is expected to be the first non-living mechanism able to “perceive, recognize and identify its surroundings without human training or control.” Navy officers demonstrating a preliminary form of the device in Washington said they hesitated to call it a machine because it is so much like a “human being without life.”

Dr. Frank Rosenblatt, research psychologist at the Cornell Aeronautical Laboratory, Inc., Buffalo, N. Y., designer of the Perceptron, conducted the demonstration. The machine, he said, would be the first electronic device to think as the human brain. Like humans, Perceptron will make mistakes at first, “but it will grow wiser as it gains experience,” he said.

The first Perceptron, to cost about $100,000, will have about 1,000 electronic “association cells” receiving electrical impulses from an eyelike scanning device with 400 photocells. The human brain has ten billion responsive cells, including 100,000,000 connections with the eye.

Self-Reproduction

In principle, Dr. Rosenblatt said, it would be possible to build Perceptrons that could reproduce themselves on an assembly line and which would be “conscious” of their existence.

Perceptron, it was pointed out, needs no “priming.” It is not necessary to introduce it to surroundings and circumstances, record the data involved and then store them for future comparison as is the case with a motor.
Neuron

- Dendrite
- Soma
- Nucleus
- Axon
- Axon terminal
- Node of Ranvier
- Schwann cell
Perceptron

Inputs

\[x_1, x_2, x_3, \ldots, x_n \]

Weights

\[w_1, w_2, w_3, \ldots, w_n \]

Weighted Sum

\[\sum w_i \cdot x_i \]

Activation Function

[\varphi]

Output

Threshold

Penn Engineering
Perceptron

Inputs

x_1

w_1

x_2

w_2

x_3

w_3

\ldots

x_n

w_n

Weighted Sum

$\sum w_i \times x_i$

Activation Function

φ

Threshold

Output

output = \begin{cases}
0 & \text{if } \sum_j w_j x_j \leq \text{threshold} \\
1 & \text{if } \sum_j w_j x_j > \text{threshold}
\end{cases}
Perceptrons for decision making

We can think about the perceptron or the sigmoid neuron as a device that makes decisions by weighing up evidence.

Example: Suppose there’s a cheese festival in your town. You like cheese.

Example from Michael Nielsen’s book *Neural Networks and Deep Learning*
Perceptrons for decision making

You might use 3 factors to decide whether to go.
1. Is the weather good?
2. Can your loyal companion come with you?
3. Is the festival near public transit?

These can be the binary input values to a perceptron.
Perceptrons for decision making

By varying weights and the threshold we get different models of decision making

Example 1: \(w_1 = 6 \quad w_2 = 2 \quad w_3 = 2 \), threshold = 5

Example 2: \(w_1 = 6 \quad w_2 = 2 \quad w_3 = 2 \), threshold = 3
Notational changes

Change 1: We can write $\sum_j w_j x_j$ as a dot product of the input vector and the weight vector:

$$\sum_j w_j x_j \equiv w \cdot x$$

Change 2: We can move the threshold to other other side of the inequality. We define a perceptron’s “bias” as the -1 * its threshold:

$$b \equiv -\text{threshold}$$

Output:

$$\text{output} = \begin{cases}
0 & \text{if } \sum_j w_j x_j \leq \text{threshold} \\
1 & \text{if } \sum_j w_j x_j > \text{threshold}
\end{cases}$$

rewrites to

$$\text{output} = \begin{cases}
0 & \text{if } w \cdot x + b \leq 0 \\
1 & \text{if } w \cdot x + b > 0
\end{cases}$$
Learning weights from examples

Perceptions can be used for all kinds of classification problems.
Think of the inputs as *features* representing something we want to classify.
The feature values for inputs are fixed, but we can choose different weight vectors. Depending on the weight vector that we pick, we will get a different classifier.
Binary Decision Rule

In the space of feature vectors

- Examples are points
- Any weight vector is a hyperplane
- One side corresponds to $Y=+1$
- Other corresponds to $Y=-1$

\[w \]

<table>
<thead>
<tr>
<th>BIAS</th>
<th>-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>free</td>
<td>4</td>
</tr>
<tr>
<td>money</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

\[f \cdot w = 0 \]
Weight Updates
Learning: Binary Perceptron

Start with weights = 0
For each training instance:
 • Classify with current weights
 • If correct (i.e., y=y*), no change!
 • If wrong: adjust the weight vector
Learning a Binary Perceptron

Start with weights = 0
For each training instance:

- Classify with current weights

- \(y = \begin{cases}
+1 & \text{if } w \cdot f(x) \leq 0 \\
-1 & \text{if } w \cdot f(x) > 0
\end{cases} \)

- If correct (i.e., \(y = y^* \)), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if \(y^* \) is -1.

- \(w = w + y^* \cdot f \)
Multiclass Decision Rule

If we have multiple classes:
- A weight vector for each class:
 \[w_y \]
- Score (activation) of a class \(y \):
 \[w_y \cdot f(x) \]
- Prediction highest score wins

\[
y = \arg \max_y w_y \cdot f(x)
\]

Binary - multiclass where the negative class has weight zero
Learning: Multiclass Perceptron

Start with all weights = 0
Pick up training examples one by one
Predict with current weights
\[y = \arg \max_y w_y \cdot f(x) \]

If correct, no change!
If wrong: lower score of wrong answer, raise score of right answer
\[w_y = w_y - f(x) \]
\[w_y^* = w_y^* + f(x) \]
Example: Multiclass Perceptron

“win the vote”
“win the election”
“win the game”

\[w_{SPORTS}\]

<table>
<thead>
<tr>
<th>Word</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIAS</td>
<td>1</td>
</tr>
<tr>
<td>win</td>
<td>0</td>
</tr>
<tr>
<td>game</td>
<td>0</td>
</tr>
<tr>
<td>vote</td>
<td>0</td>
</tr>
<tr>
<td>the</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

\[w_{POLITICS}\]

<table>
<thead>
<tr>
<th>Word</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIAS</td>
<td>0</td>
</tr>
<tr>
<td>win</td>
<td>0</td>
</tr>
<tr>
<td>game</td>
<td>0</td>
</tr>
<tr>
<td>vote</td>
<td>0</td>
</tr>
<tr>
<td>the</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

\[w_{TECH}\]

<table>
<thead>
<tr>
<th>Word</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIAS</td>
<td>0</td>
</tr>
<tr>
<td>win</td>
<td>0</td>
</tr>
<tr>
<td>game</td>
<td>0</td>
</tr>
<tr>
<td>vote</td>
<td>0</td>
</tr>
<tr>
<td>the</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Properties of Perceptrons

Separability: true if some parameters get the training set perfectly correct

Convergence: if the training is separable, perceptron will eventually converge (binary case)

Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability

\[\text{mistakes} < \frac{k}{\delta^2} \]
Examples: Perceptron

Non-Separable Case
Improving the Perceptron
Problems with the Perceptron

Noise: if the data isn’t separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)

Mediocre generalization: finds a “barely” separating solution

Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting
Fixing the Perceptron

Idea: adjust the weight update to mitigate these effects

MIRA = Margin Infused Relaxed Algorithm

Choose an update size that fixes the current mistake...
... but, minimizes the change to \(w \)

\[
\tau = \frac{(w'_y - w'_{y^*}) \cdot f + 1}{2f \cdot f}
\]

The +1 helps to generalize

Guessed \(y \) instead of \(y^* \) on example \(x \) with features \(f(x) \)

\[
w_y = w'_y - \tau f(x)
\]

\[
w_{y^*} = w'_{y^*} + \tau f(x)
\]
Maximum Step Size

In practice, it’s also bad to make updates that are too large

- Example may be labeled incorrectly
- You may not have enough features
- Solution: cap the maximum possible value of τ with some constant C

$$\tau^* = \min \left(\frac{(w'_y - w'_y^*) \cdot f + 1}{2f \cdot f}, C \right)$$

- Corresponds to an optimization that assumes non-separable data
- Usually converges faster than perceptron
- Usually better, especially on noisy data
Linear Separators

Which of these linear separators is optimal?
Support Vector Machines

Maximizing the margin: good according to intuition, theory, practice

Only support vectors matter; other training examples are ignorable

Support vector machines (SVMs) find the separator with max margin

Basically, SVMs are MIRA where you optimize over all examples at once

\[
\begin{align*}
\text{MIRA} & \\
\min_w & \frac{1}{2}||w - w'||^2 \\
& w_y^* \cdot f(x_i) \geq w_y \cdot f(x_i) + 1
\end{align*}
\]

\[
\begin{align*}
\text{SVM} & \\
\min_w & \frac{1}{2}||w||^2 \\
& \forall i, y \ w_y^* \cdot f(x_i) \geq w_y \cdot f(x_i) + 1
\end{align*}
\]
Non-Linear Separators

Data that is linearly separable works out great for linear decision rules:

But what are we going to do if the dataset is just too hard?

How about... mapping data to a higher-dimensional space:
Non-Linear Separators

General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

\[\Phi: x \rightarrow \phi(x) \]
Classification: Comparison

Naïve Bayes
• Builds a model training data
• Gives prediction probabilities
• Strong assumptions about feature independence
• One pass through data (counting)

Perceptrons / MIRA:
• Makes less assumptions about data
• Mistake-driven learning
• Multiple passes through data (prediction)
• Often more accurate